This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upciclem3 and upeu2 . (Contributed by Zhi Wang, 19-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | |- B = ( Base ` D ) |
|
| upcic.c | |- C = ( Base ` E ) |
||
| upcic.h | |- H = ( Hom ` D ) |
||
| upcic.j | |- J = ( Hom ` E ) |
||
| upcic.o | |- O = ( comp ` E ) |
||
| upcic.f | |- ( ph -> F ( D Func E ) G ) |
||
| upcic.x | |- ( ph -> X e. B ) |
||
| upcic.y | |- ( ph -> Y e. B ) |
||
| upciclem2.z | |- ( ph -> Z e. B ) |
||
| upciclem2.w | |- ( ph -> W e. C ) |
||
| upciclem2.m | |- ( ph -> M e. ( W J ( F ` X ) ) ) |
||
| upciclem2.od | |- .x. = ( comp ` D ) |
||
| upciclem2.k | |- ( ph -> K e. ( X H Y ) ) |
||
| upciclem2.l | |- ( ph -> L e. ( Y H Z ) ) |
||
| upciclem2.nm | |- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
||
| Assertion | upciclem2 | |- ( ph -> ( ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | |- B = ( Base ` D ) |
|
| 2 | upcic.c | |- C = ( Base ` E ) |
|
| 3 | upcic.h | |- H = ( Hom ` D ) |
|
| 4 | upcic.j | |- J = ( Hom ` E ) |
|
| 5 | upcic.o | |- O = ( comp ` E ) |
|
| 6 | upcic.f | |- ( ph -> F ( D Func E ) G ) |
|
| 7 | upcic.x | |- ( ph -> X e. B ) |
|
| 8 | upcic.y | |- ( ph -> Y e. B ) |
|
| 9 | upciclem2.z | |- ( ph -> Z e. B ) |
|
| 10 | upciclem2.w | |- ( ph -> W e. C ) |
|
| 11 | upciclem2.m | |- ( ph -> M e. ( W J ( F ` X ) ) ) |
|
| 12 | upciclem2.od | |- .x. = ( comp ` D ) |
|
| 13 | upciclem2.k | |- ( ph -> K e. ( X H Y ) ) |
|
| 14 | upciclem2.l | |- ( ph -> L e. ( Y H Z ) ) |
|
| 15 | upciclem2.nm | |- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) |
|
| 16 | 6 | funcrcl3 | |- ( ph -> E e. Cat ) |
| 17 | 1 2 6 | funcf1 | |- ( ph -> F : B --> C ) |
| 18 | 17 7 | ffvelcdmd | |- ( ph -> ( F ` X ) e. C ) |
| 19 | 17 8 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. C ) |
| 20 | 1 3 4 6 7 8 | funcf2 | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
| 21 | 20 13 | ffvelcdmd | |- ( ph -> ( ( X G Y ) ` K ) e. ( ( F ` X ) J ( F ` Y ) ) ) |
| 22 | 17 9 | ffvelcdmd | |- ( ph -> ( F ` Z ) e. C ) |
| 23 | 1 3 4 6 8 9 | funcf2 | |- ( ph -> ( Y G Z ) : ( Y H Z ) --> ( ( F ` Y ) J ( F ` Z ) ) ) |
| 24 | 23 14 | ffvelcdmd | |- ( ph -> ( ( Y G Z ) ` L ) e. ( ( F ` Y ) J ( F ` Z ) ) ) |
| 25 | 2 4 5 16 10 18 19 11 21 22 24 | catass | |- ( ph -> ( ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
| 26 | 1 3 12 5 6 7 8 9 13 14 | funcco | |- ( ph -> ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) = ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ) |
| 27 | 26 | oveq1d | |- ( ph -> ( ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( ( Y G Z ) ` L ) ( <. ( F ` X ) , ( F ` Y ) >. O ( F ` Z ) ) ( ( X G Y ) ` K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) ) |
| 28 | 15 | oveq2d | |- ( ph -> ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) N ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. O ( F ` Y ) ) M ) ) ) |
| 29 | 25 27 28 | 3eqtr4d | |- ( ph -> ( ( ( X G Z ) ` ( L ( <. X , Y >. .x. Z ) K ) ) ( <. W , ( F ` X ) >. O ( F ` Z ) ) M ) = ( ( ( Y G Z ) ` L ) ( <. W , ( F ` Y ) >. O ( F ` Z ) ) N ) ) |