This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpdom . (Contributed by Mario Carneiro, 13-Jan-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unxpdomlem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) | |
| unxpdomlem1.2 | ⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) | ||
| Assertion | unxpdomlem3 | ⊢ ( ( 1o ≺ 𝑎 ∧ 1o ≺ 𝑏 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) | |
| 2 | unxpdomlem1.2 | ⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) | |
| 3 | 1sdom | ⊢ ( 𝑎 ∈ V → ( 1o ≺ 𝑎 ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ) ) | |
| 4 | 3 | elv | ⊢ ( 1o ≺ 𝑎 ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ) |
| 5 | 1sdom | ⊢ ( 𝑏 ∈ V → ( 1o ≺ 𝑏 ↔ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) | |
| 6 | 5 | elv | ⊢ ( 1o ≺ 𝑏 ↔ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) |
| 7 | reeanv | ⊢ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑠 ∈ 𝑏 ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ↔ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) | |
| 8 | reeanv | ⊢ ( ∃ 𝑛 ∈ 𝑎 ∃ 𝑡 ∈ 𝑏 ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ↔ ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) ) | |
| 9 | vex | ⊢ 𝑎 ∈ V | |
| 10 | vex | ⊢ 𝑏 ∈ V | |
| 11 | 9 10 | unex | ⊢ ( 𝑎 ∪ 𝑏 ) ∈ V |
| 12 | 9 10 | xpex | ⊢ ( 𝑎 × 𝑏 ) ∈ V |
| 13 | simpr | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → 𝑥 ∈ 𝑎 ) | |
| 14 | simp2r | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑡 ∈ 𝑏 ) | |
| 15 | simp1r | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑠 ∈ 𝑏 ) | |
| 16 | 14 15 | ifcld | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) ∈ 𝑏 ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) ∈ 𝑏 ) |
| 18 | 13 17 | opelxpd | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ 𝑥 ∈ 𝑎 ) → 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 ∈ ( 𝑎 × 𝑏 ) ) |
| 19 | simp2l | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑛 ∈ 𝑎 ) | |
| 20 | simp1l | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝑚 ∈ 𝑎 ) | |
| 21 | 19 20 | ifcld | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) ∈ 𝑎 ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) ∈ 𝑎 ) |
| 23 | simpr | ⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) | |
| 24 | elun | ⊢ ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↔ ( 𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏 ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → ( 𝑥 ∈ 𝑎 ∨ 𝑥 ∈ 𝑏 ) ) |
| 26 | 25 | orcanai | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → 𝑥 ∈ 𝑏 ) |
| 27 | 22 26 | opelxpd | ⊢ ( ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) ∧ ¬ 𝑥 ∈ 𝑎 ) → 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ∈ ( 𝑎 × 𝑏 ) ) |
| 28 | 18 27 | ifclda | ⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) ∈ ( 𝑎 × 𝑏 ) ) |
| 29 | 2 28 | eqeltrid | ⊢ ( ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) ∧ 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ) → 𝐺 ∈ ( 𝑎 × 𝑏 ) ) |
| 30 | 29 1 | fmptd | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝐹 : ( 𝑎 ∪ 𝑏 ) ⟶ ( 𝑎 × 𝑏 ) ) |
| 31 | 1 2 | unxpdomlem1 | ⊢ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 32 | 31 | ad2antrl | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 33 | iftrue | ⊢ ( 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 35 | 32 34 | sylan9eq | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 36 | 1 2 | unxpdomlem1 | ⊢ ( 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 37 | 36 | ad2antll | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 38 | iftrue | ⊢ ( 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 40 | 37 39 | sylan9eq | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 41 | 35 40 | eqeq12d | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) ) |
| 42 | vex | ⊢ 𝑧 ∈ V | |
| 43 | vex | ⊢ 𝑡 ∈ V | |
| 44 | vex | ⊢ 𝑠 ∈ V | |
| 45 | 43 44 | ifex | ⊢ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) ∈ V |
| 46 | 42 45 | opth1 | ⊢ ( 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 → 𝑧 = 𝑤 ) |
| 47 | 41 46 | biimtrdi | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 48 | simprr | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) | |
| 49 | simpll | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ¬ 𝑚 = 𝑛 ) | |
| 50 | simplr | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ¬ 𝑠 = 𝑡 ) | |
| 51 | 1 2 48 49 50 | unxpdomlem2 | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 52 | 51 | pm2.21d | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 53 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 54 | simprl | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) | |
| 55 | 1 2 54 49 50 | unxpdomlem2 | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( 𝑤 ∈ 𝑎 ∧ ¬ 𝑧 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 56 | 55 | ancom2s | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 57 | 56 | pm2.21d | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑧 ) → 𝑧 = 𝑤 ) ) |
| 58 | 53 57 | biimtrid | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 59 | iffalse | ⊢ ( ¬ 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) | |
| 60 | 59 | adantr | ⊢ ( ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) |
| 61 | 32 60 | sylan9eq | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) |
| 62 | iffalse | ⊢ ( ¬ 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) | |
| 63 | 62 | adantl | ⊢ ( ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 64 | 37 63 | sylan9eq | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 65 | 61 64 | eqeq12d | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 66 | vex | ⊢ 𝑛 ∈ V | |
| 67 | vex | ⊢ 𝑚 ∈ V | |
| 68 | 66 67 | ifex | ⊢ if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) ∈ V |
| 69 | 68 42 | opth | ⊢ ( 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ↔ ( if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ 𝑧 = 𝑤 ) ) |
| 70 | 69 | simprbi | ⊢ ( 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 → 𝑧 = 𝑤 ) |
| 71 | 65 70 | biimtrdi | ⊢ ( ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) ∧ ( ¬ 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 72 | 47 52 58 71 | 4casesdan | ⊢ ( ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ∧ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∧ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 73 | 72 | ralrimivva | ⊢ ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 74 | 73 | 3ad2ant3 | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 75 | dff13 | ⊢ ( 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ↔ ( 𝐹 : ( 𝑎 ∪ 𝑏 ) ⟶ ( 𝑎 × 𝑏 ) ∧ ∀ 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ∀ 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) | |
| 76 | 30 74 75 | sylanbrc | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ) |
| 77 | f1dom2g | ⊢ ( ( ( 𝑎 ∪ 𝑏 ) ∈ V ∧ ( 𝑎 × 𝑏 ) ∈ V ∧ 𝐹 : ( 𝑎 ∪ 𝑏 ) –1-1→ ( 𝑎 × 𝑏 ) ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) | |
| 78 | 11 12 76 77 | mp3an12i | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ∧ ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 79 | 78 | 3expia | ⊢ ( ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) ∧ ( 𝑛 ∈ 𝑎 ∧ 𝑡 ∈ 𝑏 ) ) → ( ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 80 | 79 | rexlimdvva | ⊢ ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) → ( ∃ 𝑛 ∈ 𝑎 ∃ 𝑡 ∈ 𝑏 ( ¬ 𝑚 = 𝑛 ∧ ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 81 | 8 80 | biimtrrid | ⊢ ( ( 𝑚 ∈ 𝑎 ∧ 𝑠 ∈ 𝑏 ) → ( ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 82 | 81 | rexlimivv | ⊢ ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑠 ∈ 𝑏 ( ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 83 | 7 82 | sylbir | ⊢ ( ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑎 ¬ 𝑚 = 𝑛 ∧ ∃ 𝑠 ∈ 𝑏 ∃ 𝑡 ∈ 𝑏 ¬ 𝑠 = 𝑡 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |
| 84 | 4 6 83 | syl2anb | ⊢ ( ( 1o ≺ 𝑎 ∧ 1o ≺ 𝑏 ) → ( 𝑎 ∪ 𝑏 ) ≼ ( 𝑎 × 𝑏 ) ) |