This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpdom . (Contributed by Mario Carneiro, 13-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unxpdomlem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) | |
| unxpdomlem1.2 | ⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) | ||
| unxpdomlem2.1 | ⊢ ( 𝜑 → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) | ||
| unxpdomlem2.2 | ⊢ ( 𝜑 → ¬ 𝑚 = 𝑛 ) | ||
| unxpdomlem2.3 | ⊢ ( 𝜑 → ¬ 𝑠 = 𝑡 ) | ||
| Assertion | unxpdomlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unxpdomlem1.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝑎 ∪ 𝑏 ) ↦ 𝐺 ) | |
| 2 | unxpdomlem1.2 | ⊢ 𝐺 = if ( 𝑥 ∈ 𝑎 , 〈 𝑥 , if ( 𝑥 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑥 = 𝑡 , 𝑛 , 𝑚 ) , 𝑥 〉 ) | |
| 3 | unxpdomlem2.1 | ⊢ ( 𝜑 → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) | |
| 4 | unxpdomlem2.2 | ⊢ ( 𝜑 → ¬ 𝑚 = 𝑛 ) | |
| 5 | unxpdomlem2.3 | ⊢ ( 𝜑 → ¬ 𝑠 = 𝑡 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ 𝑠 = 𝑡 ) |
| 7 | elun1 | ⊢ ( 𝑧 ∈ 𝑎 → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) ) |
| 9 | 1 2 | unxpdomlem1 | ⊢ ( 𝑧 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) ) |
| 11 | iftrue | ⊢ ( 𝑧 ∈ 𝑎 → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → if ( 𝑧 ∈ 𝑎 , 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑧 = 𝑡 , 𝑛 , 𝑚 ) , 𝑧 〉 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 13 | 10 12 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) ) |
| 15 | 1 2 | unxpdomlem1 | ⊢ ( 𝑤 ∈ ( 𝑎 ∪ 𝑏 ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 17 | iffalse | ⊢ ( ¬ 𝑤 ∈ 𝑎 → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) | |
| 18 | 17 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → if ( 𝑤 ∈ 𝑎 , 〈 𝑤 , if ( 𝑤 = 𝑚 , 𝑡 , 𝑠 ) 〉 , 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( 𝐹 ‘ 𝑤 ) = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 20 | 13 19 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) ) |
| 21 | 20 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ) |
| 22 | vex | ⊢ 𝑧 ∈ V | |
| 23 | vex | ⊢ 𝑡 ∈ V | |
| 24 | vex | ⊢ 𝑠 ∈ V | |
| 25 | 23 24 | ifex | ⊢ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) ∈ V |
| 26 | 22 25 | opth | ⊢ ( 〈 𝑧 , if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) 〉 = 〈 if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) , 𝑤 〉 ↔ ( 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) ) |
| 27 | 21 26 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ∧ if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) ) |
| 28 | 27 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑤 ) |
| 29 | iftrue | ⊢ ( 𝑧 = 𝑚 → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑡 ) | |
| 30 | 28 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑡 ↔ 𝑤 = 𝑡 ) ) |
| 31 | 29 30 | imbitrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → 𝑤 = 𝑡 ) ) |
| 32 | iftrue | ⊢ ( 𝑤 = 𝑡 → if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑛 ) | |
| 33 | 27 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑧 = if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) ) |
| 34 | 33 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑛 ↔ if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑛 ) ) |
| 35 | 32 34 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑤 = 𝑡 → 𝑧 = 𝑛 ) ) |
| 36 | 31 35 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → 𝑧 = 𝑛 ) ) |
| 37 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑚 = 𝑛 ) |
| 38 | equequ1 | ⊢ ( 𝑧 = 𝑚 → ( 𝑧 = 𝑛 ↔ 𝑚 = 𝑛 ) ) | |
| 39 | 38 | notbid | ⊢ ( 𝑧 = 𝑚 → ( ¬ 𝑧 = 𝑛 ↔ ¬ 𝑚 = 𝑛 ) ) |
| 40 | 37 39 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 → ¬ 𝑧 = 𝑛 ) ) |
| 41 | 36 40 | pm2.65d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ¬ 𝑧 = 𝑚 ) |
| 42 | 41 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → if ( 𝑧 = 𝑚 , 𝑡 , 𝑠 ) = 𝑠 ) |
| 43 | iffalse | ⊢ ( ¬ 𝑤 = 𝑡 → if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑚 ) | |
| 44 | 33 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( 𝑧 = 𝑚 ↔ if ( 𝑤 = 𝑡 , 𝑛 , 𝑚 ) = 𝑚 ) ) |
| 45 | 43 44 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → ( ¬ 𝑤 = 𝑡 → 𝑧 = 𝑚 ) ) |
| 46 | 41 45 | mt3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑤 = 𝑡 ) |
| 47 | 28 42 46 | 3eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) → 𝑠 = 𝑡 ) |
| 48 | 6 47 | mtand | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎 ) ) → ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |