This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unwdomg | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdom3i | ⊢ ( 𝐴 ≼* 𝐵 → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
| 3 | brwdom3i | ⊢ ( 𝐶 ≼* 𝐷 → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) |
| 6 | relwdom | ⊢ Rel ≼* | |
| 7 | 6 | brrelex1i | ⊢ ( 𝐴 ≼* 𝐵 → 𝐴 ∈ V ) |
| 8 | 6 | brrelex1i | ⊢ ( 𝐶 ≼* 𝐷 → 𝐶 ∈ V ) |
| 9 | unexg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐴 ∪ 𝐶 ) ∈ V ) |
| 13 | 6 | brrelex2i | ⊢ ( 𝐴 ≼* 𝐵 → 𝐵 ∈ V ) |
| 14 | 6 | brrelex2i | ⊢ ( 𝐶 ≼* 𝐷 → 𝐷 ∈ V ) |
| 15 | unexg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐵 ∪ 𝐷 ) ∈ V ) |
| 19 | elun | ⊢ ( 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) | |
| 20 | eqeq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑏 ) ) ) | |
| 21 | 20 | rexbidv | ⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ) ) |
| 22 | 21 | rspcva | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ) |
| 23 | fveq2 | ⊢ ( 𝑏 = 𝑧 → ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 24 | 23 | eqeq2d | ⊢ ( 𝑏 = 𝑧 → ( 𝑦 = ( 𝑓 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) ) |
| 26 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) | |
| 27 | iftrue | ⊢ ( 𝑧 ∈ 𝐵 → if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) = 𝑓 ) | |
| 28 | 27 | fveq1d | ⊢ ( 𝑧 ∈ 𝐵 → ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 29 | 28 | eqeq2d | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ↔ 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
| 30 | 29 | biimprd | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
| 31 | 30 | reximia | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝐵 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 32 | ssrexv | ⊢ ( 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) → ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) | |
| 33 | 26 31 32 | mpsyl | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 34 | 25 33 | sylbi | ⊢ ( ∃ 𝑏 ∈ 𝐵 𝑦 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 35 | 22 34 | syl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 36 | 35 | ancoms | ⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 37 | 36 | adantlr | ⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 38 | 37 | adantll | ⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 39 | eqeq1 | ⊢ ( 𝑎 = 𝑦 → ( 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑏 ) ) ) | |
| 40 | 39 | rexbidv | ⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑏 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑏 ) ) ) |
| 41 | fveq2 | ⊢ ( 𝑏 = 𝑧 → ( 𝑔 ‘ 𝑏 ) = ( 𝑔 ‘ 𝑧 ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑏 = 𝑧 → ( 𝑦 = ( 𝑔 ‘ 𝑏 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 43 | 42 | cbvrexvw | ⊢ ( ∃ 𝑏 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) |
| 44 | 40 43 | bitrdi | ⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ↔ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 45 | 44 | rspccva | ⊢ ( ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) |
| 46 | ssun2 | ⊢ 𝐷 ⊆ ( 𝐵 ∪ 𝐷 ) | |
| 47 | minel | ⊢ ( ( 𝑧 ∈ 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ¬ 𝑧 ∈ 𝐵 ) | |
| 48 | 47 | ancoms | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ¬ 𝑧 ∈ 𝐵 ) |
| 49 | 48 | iffalsed | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) = 𝑔 ) |
| 50 | 49 | fveq1d | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) |
| 51 | 50 | eqeq2d | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ↔ 𝑦 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 52 | 51 | biimprd | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ 𝑧 ∈ 𝐷 ) → ( 𝑦 = ( 𝑔 ‘ 𝑧 ) → 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
| 53 | 52 | reximdva | ⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) → ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 55 | ssrexv | ⊢ ( 𝐷 ⊆ ( 𝐵 ∪ 𝐷 ) → ( ∃ 𝑧 ∈ 𝐷 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) | |
| 56 | 46 54 55 | mpsyl | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∃ 𝑧 ∈ 𝐷 𝑦 = ( 𝑔 ‘ 𝑧 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 57 | 45 56 | sylan2 | ⊢ ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 58 | 57 | anassrs | ⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 59 | 58 | adantlrl | ⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 60 | 38 59 | jaodan | ⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ ( 𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 61 | 19 60 | sylan2b | ⊢ ( ( ( ( 𝐵 ∩ 𝐷 ) = ∅ ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 62 | 61 | expl | ⊢ ( ( 𝐵 ∩ 𝐷 ) = ∅ → ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) ) |
| 64 | 63 | impl | ⊢ ( ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) ∧ 𝑦 ∈ ( 𝐴 ∪ 𝐶 ) ) → ∃ 𝑧 ∈ ( 𝐵 ∪ 𝐷 ) 𝑦 = ( if ( 𝑧 ∈ 𝐵 , 𝑓 , 𝑔 ) ‘ 𝑧 ) ) |
| 65 | 12 18 64 | wdom2d | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) ) ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |
| 66 | 65 | expr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) ) |
| 67 | 66 | exlimdv | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∃ 𝑔 ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐷 𝑎 = ( 𝑔 ‘ 𝑏 ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) ) |
| 68 | 5 67 | mpd | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |
| 69 | 2 68 | exlimddv | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≼* ( 𝐵 ∪ 𝐷 ) ) |