This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpwdomg | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdom3i | ⊢ ( 𝐴 ≼* 𝐵 → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) |
| 3 | brwdom3i | ⊢ ( 𝐶 ≼* 𝐷 → ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) |
| 5 | relwdom | ⊢ Rel ≼* | |
| 6 | 5 | brrelex1i | ⊢ ( 𝐴 ≼* 𝐵 → 𝐴 ∈ V ) |
| 7 | 5 | brrelex1i | ⊢ ( 𝐶 ≼* 𝐷 → 𝐶 ∈ V ) |
| 8 | xpexg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 × 𝐶 ) ∈ V ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐴 × 𝐶 ) ∈ V ) |
| 11 | 5 | brrelex2i | ⊢ ( 𝐴 ≼* 𝐵 → 𝐵 ∈ V ) |
| 12 | 5 | brrelex2i | ⊢ ( 𝐶 ≼* 𝐷 → 𝐷 ∈ V ) |
| 13 | xpexg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐷 ∈ V ) → ( 𝐵 × 𝐷 ) ∈ V ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐵 × 𝐷 ) ∈ V ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐵 × 𝐷 ) ∈ V ) |
| 16 | pm3.2 | ⊢ ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) | |
| 17 | 16 | ralimdv | ⊢ ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 18 | 17 | com12 | ⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 19 | 18 | ralimdv | ⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 20 | 19 | impcom | ⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 21 | pm3.2 | ⊢ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) | |
| 22 | 21 | reximdv | ⊢ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 23 | 22 | com12 | ⊢ ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 24 | 23 | reximdv | ⊢ ( ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 25 | 24 | impcom | ⊢ ( ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 26 | 25 | 2ralimi | ⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ( ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 27 | 20 26 | syl | ⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 28 | eqeq1 | ⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ 〈 𝑎 , 𝑐 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) ) | |
| 29 | vex | ⊢ 𝑎 ∈ V | |
| 30 | vex | ⊢ 𝑐 ∈ V | |
| 31 | 29 30 | opth | ⊢ ( 〈 𝑎 , 𝑐 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 32 | 28 31 | bitrdi | ⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 33 | 32 | 2rexbidv | ⊢ ( 𝑥 = 〈 𝑎 , 𝑐 〉 → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ) |
| 34 | 33 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 × 𝐶 ) ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑐 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 ( 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) |
| 35 | 27 34 | sylibr | ⊢ ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) → ∀ 𝑥 ∈ ( 𝐴 × 𝐶 ) ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 36 | 35 | r19.21bi | ⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 37 | vex | ⊢ 𝑏 ∈ V | |
| 38 | vex | ⊢ 𝑑 ∈ V | |
| 39 | 37 38 | op1std | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 1st ‘ 𝑦 ) = 𝑏 ) |
| 40 | 39 | fveq2d | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) = ( 𝑓 ‘ 𝑏 ) ) |
| 41 | 37 38 | op2ndd | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 2nd ‘ 𝑦 ) = 𝑑 ) |
| 42 | 41 | fveq2d | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) = ( 𝑔 ‘ 𝑑 ) ) |
| 43 | 40 42 | opeq12d | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 44 | 43 | eqeq2d | ⊢ ( 𝑦 = 〈 𝑏 , 𝑑 〉 → ( 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ↔ 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) ) |
| 45 | 44 | rexxp | ⊢ ( ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ↔ ∃ 𝑏 ∈ 𝐵 ∃ 𝑑 ∈ 𝐷 𝑥 = 〈 ( 𝑓 ‘ 𝑏 ) , ( 𝑔 ‘ 𝑑 ) 〉 ) |
| 46 | 36 45 | sylibr | ⊢ ( ( ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ) |
| 47 | 46 | adantll | ⊢ ( ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) ∧ 𝑥 ∈ ( 𝐴 × 𝐶 ) ) → ∃ 𝑦 ∈ ( 𝐵 × 𝐷 ) 𝑥 = 〈 ( 𝑓 ‘ ( 1st ‘ 𝑦 ) ) , ( 𝑔 ‘ ( 2nd ‘ 𝑦 ) ) 〉 ) |
| 48 | 10 15 47 | wdom2d | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) ) ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) |
| 49 | 48 | expr | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) |
| 50 | 49 | exlimdv | ⊢ ( ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) ∧ ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) ) |
| 52 | 51 | exlimdv | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( ∃ 𝑓 ∀ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝑓 ‘ 𝑏 ) → ( ∃ 𝑔 ∀ 𝑐 ∈ 𝐶 ∃ 𝑑 ∈ 𝐷 𝑐 = ( 𝑔 ‘ 𝑑 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) ) ) |
| 53 | 2 4 52 | mp2d | ⊢ ( ( 𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ) → ( 𝐴 × 𝐶 ) ≼* ( 𝐵 × 𝐷 ) ) |