This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 23-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopadj2 | ⊢ ( 𝑇 ∈ UniOp → ( adjℎ ‘ 𝑇 ) = ◡ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) | |
| 2 | lnopf | ⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 | cnvunop | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 ∈ UniOp ) | |
| 5 | unoplin | ⊢ ( ◡ 𝑇 ∈ UniOp → ◡ 𝑇 ∈ LinOp ) | |
| 6 | lnopf | ⊢ ( ◡ 𝑇 ∈ LinOp → ◡ 𝑇 : ℋ ⟶ ℋ ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( 𝑇 ∈ UniOp → ◡ 𝑇 : ℋ ⟶ ℋ ) |
| 8 | unopadj | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) | |
| 9 | 8 | 3expib | ⊢ ( 𝑇 ∈ UniOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) ) |
| 10 | 9 | ralrimivv | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) |
| 11 | adjeq | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ◡ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( ◡ 𝑇 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = ◡ 𝑇 ) | |
| 12 | 3 7 10 11 | syl3anc | ⊢ ( 𝑇 ∈ UniOp → ( adjℎ ‘ 𝑇 ) = ◡ 𝑇 ) |