This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopadj | ⊢ ( 𝑇 ∈ HrmOp → ( adjℎ ‘ 𝑇 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 3 | 2 | eqcomd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 4 | 3 | 3expib | ⊢ ( 𝑇 ∈ HrmOp → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 5 | 4 | ralrimivv | ⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 6 | adjeq | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) ) → ( adjℎ ‘ 𝑇 ) = 𝑇 ) | |
| 7 | 1 1 5 6 | syl3anc | ⊢ ( 𝑇 ∈ HrmOp → ( adjℎ ‘ 𝑇 ) = 𝑇 ) |