This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of a unitary operator is its inverse (converse). Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 23-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopadj2 | |- ( T e. UniOp -> ( adjh ` T ) = `' T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unoplin | |- ( T e. UniOp -> T e. LinOp ) |
|
| 2 | lnopf | |- ( T e. LinOp -> T : ~H --> ~H ) |
|
| 3 | 1 2 | syl | |- ( T e. UniOp -> T : ~H --> ~H ) |
| 4 | cnvunop | |- ( T e. UniOp -> `' T e. UniOp ) |
|
| 5 | unoplin | |- ( `' T e. UniOp -> `' T e. LinOp ) |
|
| 6 | lnopf | |- ( `' T e. LinOp -> `' T : ~H --> ~H ) |
|
| 7 | 4 5 6 | 3syl | |- ( T e. UniOp -> `' T : ~H --> ~H ) |
| 8 | unopadj | |- ( ( T e. UniOp /\ x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih y ) = ( x .ih ( `' T ` y ) ) ) |
|
| 9 | 8 | 3expib | |- ( T e. UniOp -> ( ( x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih y ) = ( x .ih ( `' T ` y ) ) ) ) |
| 10 | 9 | ralrimivv | |- ( T e. UniOp -> A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( `' T ` y ) ) ) |
| 11 | adjeq | |- ( ( T : ~H --> ~H /\ `' T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( `' T ` y ) ) ) -> ( adjh ` T ) = `' T ) |
|
| 12 | 3 7 10 11 | syl3anc | |- ( T e. UniOp -> ( adjh ` T ) = `' T ) |