This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse (converse) of a unitary operator is its adjoint. Equation 2 of AkhiezerGlazman p. 72. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopadj | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( `' T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | |- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
|
| 2 | f1ocnvfv2 | |- ( ( T : ~H -1-1-onto-> ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
|
| 3 | 1 2 | sylan | |- ( ( T e. UniOp /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
| 4 | 3 | 3adant2 | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) |
| 5 | 4 | oveq2d | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( ( T ` A ) .ih B ) ) |
| 6 | f1ocnv | |- ( T : ~H -1-1-onto-> ~H -> `' T : ~H -1-1-onto-> ~H ) |
|
| 7 | f1of | |- ( `' T : ~H -1-1-onto-> ~H -> `' T : ~H --> ~H ) |
|
| 8 | 1 6 7 | 3syl | |- ( T e. UniOp -> `' T : ~H --> ~H ) |
| 9 | 8 | ffvelcdmda | |- ( ( T e. UniOp /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) |
| 10 | 9 | 3adant2 | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) |
| 11 | unop | |- ( ( T e. UniOp /\ A e. ~H /\ ( `' T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) |
|
| 12 | 10 11 | syld3an3 | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) |
| 13 | 5 12 | eqtr3d | |- ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( `' T ` B ) ) ) |