This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitsubm.1 | ||
| unitsubm.2 | |||
| Assertion | unitsubm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitsubm.1 | ||
| 2 | unitsubm.2 | ||
| 3 | eqid | ||
| 4 | 3 1 | unitss | |
| 5 | 4 | a1i | |
| 6 | eqid | ||
| 7 | 1 6 | 1unit | |
| 8 | 2 | oveq1i | |
| 9 | 1 8 | unitgrp | |
| 10 | 9 | grpmndd | |
| 11 | 2 | ringmgp | |
| 12 | 2 3 | mgpbas | |
| 13 | 2 6 | ringidval | |
| 14 | eqid | ||
| 15 | 12 13 14 | issubm2 | |
| 16 | 11 15 | syl | |
| 17 | 5 7 10 16 | mpbir3and |