This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1rinv.1 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 1rinv.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 1rinv | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rinv.1 | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 2 | 1rinv.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 4 | 3 2 | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 3 1 5 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 4 6 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 9 | 5 8 2 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 10 | 7 9 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 11 | 3 1 8 2 | unitrinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
| 12 | 4 11 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
| 13 | 10 12 | eqtr3d | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) = 1 ) |