This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unbnn . The function F maps the set of natural numbers one-to-one to the set of unbounded natural numbers A . (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| Assertion | unblem4 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> F : _om -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unblem.2 | |- F = ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) |
|
| 2 | omsson | |- _om C_ On |
|
| 3 | sstr | |- ( ( A C_ _om /\ _om C_ On ) -> A C_ On ) |
|
| 4 | 2 3 | mpan2 | |- ( A C_ _om -> A C_ On ) |
| 5 | 4 | adantr | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> A C_ On ) |
| 6 | frfnom | |- ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) Fn _om |
|
| 7 | 1 | fneq1i | |- ( F Fn _om <-> ( rec ( ( x e. _V |-> |^| ( A \ suc x ) ) , |^| A ) |` _om ) Fn _om ) |
| 8 | 6 7 | mpbir | |- F Fn _om |
| 9 | 1 | unblem2 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. A ) ) |
| 10 | 9 | ralrimiv | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> A. z e. _om ( F ` z ) e. A ) |
| 11 | ffnfv | |- ( F : _om --> A <-> ( F Fn _om /\ A. z e. _om ( F ` z ) e. A ) ) |
|
| 12 | 11 | biimpri | |- ( ( F Fn _om /\ A. z e. _om ( F ` z ) e. A ) -> F : _om --> A ) |
| 13 | 8 10 12 | sylancr | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> F : _om --> A ) |
| 14 | 1 | unblem3 | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> ( z e. _om -> ( F ` z ) e. ( F ` suc z ) ) ) |
| 15 | 14 | ralrimiv | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> A. z e. _om ( F ` z ) e. ( F ` suc z ) ) |
| 16 | omsmo | |- ( ( ( A C_ On /\ F : _om --> A ) /\ A. z e. _om ( F ` z ) e. ( F ` suc z ) ) -> F : _om -1-1-> A ) |
|
| 17 | 5 13 15 16 | syl21anc | |- ( ( A C_ _om /\ A. w e. _om E. v e. A w e. v ) -> F : _om -1-1-> A ) |