This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003) (Revised by David Abernethy, 1-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsmo | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → 𝐹 : ω –1-1→ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → 𝐹 : ω ⟶ 𝐴 ) | |
| 2 | omsmolem | ⊢ ( 𝑧 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 4 | 3 | imp | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( 𝑦 ∈ 𝑧 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
| 5 | omsmolem | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 7 | 6 | imp | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( 𝑧 ∈ 𝑦 → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 4 7 | orim12d | ⊢ ( ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ∧ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 | 8 | ancoms | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 10 | 9 | con3d | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) → ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 11 | ffvelcdm | ⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ) | |
| 12 | ssel | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) | |
| 13 | 11 12 | syl5 | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑦 ∈ ω ) → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
| 14 | 13 | expdimp | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑦 ∈ ω → ( 𝐹 ‘ 𝑦 ) ∈ On ) ) |
| 15 | eloni | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ On → Ord ( 𝐹 ‘ 𝑦 ) ) | |
| 16 | 14 15 | syl6 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑦 ∈ ω → Ord ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | ffvelcdm | ⊢ ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 ) | |
| 18 | ssel | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐴 → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) | |
| 19 | 17 18 | syl5 | ⊢ ( 𝐴 ⊆ On → ( ( 𝐹 : ω ⟶ 𝐴 ∧ 𝑧 ∈ ω ) → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
| 20 | 19 | expdimp | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑧 ∈ ω → ( 𝐹 ‘ 𝑧 ) ∈ On ) ) |
| 21 | eloni | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ On → Ord ( 𝐹 ‘ 𝑧 ) ) | |
| 22 | 20 21 | syl6 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( 𝑧 ∈ ω → Ord ( 𝐹 ‘ 𝑧 ) ) ) |
| 23 | 16 22 | anim12d | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) → ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) ) |
| 25 | ordtri3 | ⊢ ( ( Ord ( 𝐹 ‘ 𝑦 ) ∧ Ord ( 𝐹 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 27 | 26 | adantlr | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ¬ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 ‘ 𝑧 ) ∨ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 28 | nnord | ⊢ ( 𝑦 ∈ ω → Ord 𝑦 ) | |
| 29 | nnord | ⊢ ( 𝑧 ∈ ω → Ord 𝑧 ) | |
| 30 | ordtri3 | ⊢ ( ( Ord 𝑦 ∧ Ord 𝑧 ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) | |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( 𝑦 = 𝑧 ↔ ¬ ( 𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 33 | 10 27 32 | 3imtr4d | ⊢ ( ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) ∧ ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 34 | 33 | ralrimivva | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 35 | dff13 | ⊢ ( 𝐹 : ω –1-1→ 𝐴 ↔ ( 𝐹 : ω ⟶ 𝐴 ∧ ∀ 𝑦 ∈ ω ∀ 𝑧 ∈ ω ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 36 | 1 34 35 | sylanbrc | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝐹 : ω ⟶ 𝐴 ) ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 ‘ suc 𝑥 ) ) → 𝐹 : ω –1-1→ 𝐴 ) |