This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a multigraph, there is not only one edge starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | umgr2edg1 | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | umgr2edg | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 4 | 3anrot | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) | |
| 5 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 6 | 5 | 3anbi3i | ⊢ ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 7 | 4 6 | bitri | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ↔ ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 8 | df-3an | ⊢ ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ↔ ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 10 | 9 | 2rexbii | ⊢ ( ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 11 | 3 10 | sylib | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 12 | rexanali | ⊢ ( ∃ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) | |
| 13 | 12 | rexbii | ⊢ ( ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ dom 𝐼 ¬ ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 14 | rexnal | ⊢ ( ∃ 𝑥 ∈ dom 𝐼 ¬ ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 16 | 11 15 | sylib | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 17 | 16 | intnand | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ( ∃ 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) | |
| 19 | 18 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 20 | 19 | reu4 | ⊢ ( ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ ∀ 𝑥 ∈ dom 𝐼 ∀ 𝑦 ∈ dom 𝐼 ( ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
| 21 | 17 20 | sylnibr | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ¬ ∃! 𝑥 ∈ dom 𝐼 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) |