This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | umgr2edg | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 4 | 3 | anim1i | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ) |
| 6 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 7 | 6 2 | umgrpredgv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝑁 , 𝐴 } ∈ 𝐸 ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 8 | 7 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 9 | 8 | simprd | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 10 | 6 2 | umgrpredgv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) → ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 11 | 10 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 12 | 11 | simpld | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 13 | 8 | simpld | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 14 | simpr | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) | |
| 15 | 1 2 6 | uhgr2edg | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 16 | 5 9 12 13 14 15 | syl131anc | ⊢ ( ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |