This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The sequence of functions F converges uniformly to G on S . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmval | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmrel | ⊢ Rel ( ⇝𝑢 ‘ 𝑆 ) | |
| 2 | 1 | brrelex12i | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 3 | 2 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
| 4 | 3simpa | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ) ) | |
| 5 | fvex | ⊢ ( ℤ≥ ‘ 𝑛 ) ∈ V | |
| 6 | fex | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ∈ V ) → 𝐹 ∈ V ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ V ) |
| 8 | 7 | a1i | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝐹 ∈ V ) ) |
| 9 | fex | ⊢ ( ( 𝐺 : 𝑆 ⟶ ℂ ∧ 𝑆 ∈ 𝑉 ) → 𝐺 ∈ V ) | |
| 10 | 9 | expcom | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐺 : 𝑆 ⟶ ℂ → 𝐺 ∈ V ) ) |
| 11 | 8 10 | anim12d | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
| 12 | 4 11 | syl5 | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
| 13 | 12 | rexlimdvw | ⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) ) |
| 14 | df-ulm | ⊢ ⇝𝑢 = ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) | |
| 15 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( ℂ ↑m 𝑠 ) = ( ℂ ↑m 𝑆 ) ) | |
| 16 | 15 | feq3d | ⊢ ( 𝑠 = 𝑆 → ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ↔ 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) ) |
| 17 | feq2 | ⊢ ( 𝑠 = 𝑆 → ( 𝑦 : 𝑠 ⟶ ℂ ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) | |
| 18 | raleq | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) | |
| 19 | 18 | rexralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 21 | 16 17 20 | 3anbi123d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 22 | 21 | rexbidv | ⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 23 | 22 | opabbidv | ⊢ ( 𝑠 = 𝑆 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
| 24 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 25 | simpr1 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 26 | uzssz | ⊢ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ | |
| 27 | ovex | ⊢ ( ℂ ↑m 𝑆 ) ∈ V | |
| 28 | zex | ⊢ ℤ ∈ V | |
| 29 | elpm2r | ⊢ ( ( ( ( ℂ ↑m 𝑆 ) ∈ V ∧ ℤ ∈ V ) ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) | |
| 30 | 27 28 29 | mpanl12 | ⊢ ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ ( ℤ≥ ‘ 𝑛 ) ⊆ ℤ ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 31 | 25 26 30 | sylancl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ) |
| 32 | simpr2 | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑦 : 𝑆 ⟶ ℂ ) | |
| 33 | cnex | ⊢ ℂ ∈ V | |
| 34 | simpl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑆 ∈ 𝑉 ) | |
| 35 | elmapg | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝑉 ) → ( 𝑦 ∈ ( ℂ ↑m 𝑆 ) ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → ( 𝑦 ∈ ( ℂ ↑m 𝑆 ) ↔ 𝑦 : 𝑆 ⟶ ℂ ) ) |
| 37 | 32 36 | mpbird | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) |
| 38 | 31 37 | jca | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) |
| 39 | 38 | ex | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) ) |
| 40 | 39 | rexlimdvw | ⊢ ( 𝑆 ∈ 𝑉 → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) ) ) |
| 41 | 40 | ssopab2dv | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) } ) |
| 42 | df-xp | ⊢ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑓 ∈ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∧ 𝑦 ∈ ( ℂ ↑m 𝑆 ) ) } | |
| 43 | 41 42 | sseqtrrdi | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) ) |
| 44 | ovex | ⊢ ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) ∈ V | |
| 45 | 44 27 | xpex | ⊢ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) ∈ V |
| 46 | 45 | ssex | ⊢ ( { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ⊆ ( ( ( ℂ ↑m 𝑆 ) ↑pm ℤ ) × ( ℂ ↑m 𝑆 ) ) → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ∈ V ) |
| 47 | 43 46 | syl | ⊢ ( 𝑆 ∈ 𝑉 → { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ∈ V ) |
| 48 | 14 23 24 47 | fvmptd3 | ⊢ ( 𝑆 ∈ 𝑉 → ( ⇝𝑢 ‘ 𝑆 ) = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
| 49 | 48 | breqd | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } 𝐺 ) ) |
| 50 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → 𝑓 = 𝐹 ) | |
| 51 | 50 | feq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ↔ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) ) |
| 52 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → 𝑦 = 𝐺 ) | |
| 53 | 52 | feq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑦 : 𝑆 ⟶ ℂ ↔ 𝐺 : 𝑆 ⟶ ℂ ) ) |
| 54 | 50 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 55 | 54 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 56 | 52 | fveq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 57 | 55 56 | oveq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 59 | 58 | breq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 60 | 59 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 61 | 60 | rexralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 62 | 61 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 63 | 51 53 62 | 3anbi123d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 64 | 63 | rexbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐺 ) → ( ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 65 | eqid | ⊢ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } = { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } | |
| 66 | 64 65 | brabga | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑦 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 67 | 49 66 | sylan9bb | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 68 | 67 | ex | ⊢ ( 𝑆 ∈ 𝑉 → ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) ) |
| 69 | 3 13 68 | pm5.21ndd | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |