This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the uniform convergence of a sequence of functions. Here F ( ~>uS ) G if F is a sequence of functions F ( n ) , n e. NN defined on S and G is a function on S , and for every 0 < x there is a j such that the functions F ( k ) for j <_ k are all uniformly within x of G on the domain S . Compare with df-clim . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ulm | ⊢ ⇝𝑢 = ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | culm | ⊢ ⇝𝑢 | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | vn | ⊢ 𝑛 | |
| 6 | cz | ⊢ ℤ | |
| 7 | 3 | cv | ⊢ 𝑓 |
| 8 | cuz | ⊢ ℤ≥ | |
| 9 | 5 | cv | ⊢ 𝑛 |
| 10 | 9 8 | cfv | ⊢ ( ℤ≥ ‘ 𝑛 ) |
| 11 | cc | ⊢ ℂ | |
| 12 | cmap | ⊢ ↑m | |
| 13 | 1 | cv | ⊢ 𝑠 |
| 14 | 11 13 12 | co | ⊢ ( ℂ ↑m 𝑠 ) |
| 15 | 10 14 7 | wf | ⊢ 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) |
| 16 | 4 | cv | ⊢ 𝑦 |
| 17 | 13 11 16 | wf | ⊢ 𝑦 : 𝑠 ⟶ ℂ |
| 18 | vx | ⊢ 𝑥 | |
| 19 | crp | ⊢ ℝ+ | |
| 20 | vj | ⊢ 𝑗 | |
| 21 | vk | ⊢ 𝑘 | |
| 22 | 20 | cv | ⊢ 𝑗 |
| 23 | 22 8 | cfv | ⊢ ( ℤ≥ ‘ 𝑗 ) |
| 24 | vz | ⊢ 𝑧 | |
| 25 | cabs | ⊢ abs | |
| 26 | 21 | cv | ⊢ 𝑘 |
| 27 | 26 7 | cfv | ⊢ ( 𝑓 ‘ 𝑘 ) |
| 28 | 24 | cv | ⊢ 𝑧 |
| 29 | 28 27 | cfv | ⊢ ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) |
| 30 | cmin | ⊢ − | |
| 31 | 28 16 | cfv | ⊢ ( 𝑦 ‘ 𝑧 ) |
| 32 | 29 31 30 | co | ⊢ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) |
| 33 | 32 25 | cfv | ⊢ ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) |
| 34 | clt | ⊢ < | |
| 35 | 18 | cv | ⊢ 𝑥 |
| 36 | 33 35 34 | wbr | ⊢ ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 37 | 36 24 13 | wral | ⊢ ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 38 | 37 21 23 | wral | ⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 39 | 38 20 10 | wrex | ⊢ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 40 | 39 18 19 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 |
| 41 | 15 17 40 | w3a | ⊢ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 42 | 41 5 6 | wrex | ⊢ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) |
| 43 | 42 3 4 | copab | ⊢ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } |
| 44 | 1 2 43 | cmpt | ⊢ ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |
| 45 | 0 44 | wceq | ⊢ ⇝𝑢 = ( 𝑠 ∈ V ↦ { 〈 𝑓 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ℤ ( 𝑓 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑠 ) ∧ 𝑦 : 𝑠 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑠 ( abs ‘ ( ( ( 𝑓 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑦 ‘ 𝑧 ) ) ) < 𝑥 ) } ) |