This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmss.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmss.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | ||
| ulmss.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑊 ) | ||
| ulmss.u | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| Assertion | ulmss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmss.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmss.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) | |
| 3 | ulmss.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ 𝑊 ) | |
| 4 | ulmss.u | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 5 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑇 ⊆ 𝑆 ) |
| 7 | ssralv | ⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 9 | fvres | ⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) | |
| 10 | 9 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑥 ∈ 𝑍 ) | |
| 12 | 3 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ 𝑊 ) |
| 13 | 12 | resexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 ↾ 𝑇 ) ∈ V ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) = ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) | |
| 15 | 14 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ ( 𝐴 ↾ 𝑇 ) ∈ V ) → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ↾ 𝑇 ) ) |
| 16 | 11 13 15 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( 𝐴 ↾ 𝑇 ) ) |
| 17 | 16 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑧 ) ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) | |
| 19 | 18 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 20 | 11 12 19 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 21 | 20 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝐴 ‘ 𝑧 ) ) |
| 22 | 10 17 21 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ) |
| 23 | 22 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ) |
| 24 | nfv | ⊢ Ⅎ 𝑘 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 𝑇 | |
| 26 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) | |
| 27 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 28 | 26 27 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) |
| 29 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) | |
| 30 | 29 27 | nffv | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
| 31 | 28 30 | nfeq | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
| 32 | 25 31 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) |
| 33 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ) | |
| 34 | 33 | fveq1d | ⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ) | |
| 36 | 35 | fveq1d | ⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 37 | 34 36 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝑥 = 𝑘 → ( ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 39 | 24 32 38 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑥 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑥 ) ‘ 𝑧 ) ↔ ∀ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 40 | 23 39 | sylib | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 41 | 40 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 42 | fvoveq1 | ⊢ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 43 | 42 | breq1d | ⊢ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 44 | 43 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) → ∀ 𝑧 ∈ 𝑇 ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 45 | ralbi | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) → ( ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) | |
| 46 | 41 44 45 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ↔ ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 47 | 8 46 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 48 | 5 47 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 49 | 48 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 50 | 49 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 51 | 50 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 52 | 51 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 53 | ulmf | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 54 | 4 53 | syl | ⊢ ( 𝜑 → ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 55 | fdm | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → dom ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) = ( ℤ≥ ‘ 𝑚 ) ) | |
| 56 | 18 | dmmptss | ⊢ dom ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ 𝑍 |
| 57 | 55 56 | eqsstrrdi | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 ) |
| 58 | uzid | ⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 60 | ssel | ⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑚 ∈ 𝑍 ) ) | |
| 61 | eluzel2 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 62 | 61 1 | eleq2s | ⊢ ( 𝑚 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
| 63 | 60 62 | syl6 | ⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ 𝑍 → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑚 ) → 𝑀 ∈ ℤ ) ) |
| 64 | 57 59 63 | syl2imc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝑀 ∈ ℤ ) ) |
| 65 | 64 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → 𝑀 ∈ ℤ ) ) |
| 66 | 54 65 | mpd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 67 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐴 ∈ 𝑊 ) |
| 68 | 18 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝑍 𝐴 ∈ 𝑊 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ) |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ) |
| 70 | frn | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) | |
| 71 | 70 | rexlimivw | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : ( ℤ≥ ‘ 𝑚 ) ⟶ ( ℂ ↑m 𝑆 ) → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) |
| 72 | 54 71 | syl | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) |
| 73 | df-f | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) Fn 𝑍 ∧ ran ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ⊆ ( ℂ ↑m 𝑆 ) ) ) | |
| 74 | 69 72 73 | sylanbrc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 75 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 76 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 77 | ulmcl | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 78 | 4 77 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 79 | ulmscl | ⊢ ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 80 | 4 79 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 81 | 1 66 74 75 76 78 80 | ulm2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 82 | 74 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 ∈ ( ℂ ↑m 𝑆 ) ) |
| 83 | elmapi | ⊢ ( 𝐴 ∈ ( ℂ ↑m 𝑆 ) → 𝐴 : 𝑆 ⟶ ℂ ) | |
| 84 | 82 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐴 : 𝑆 ⟶ ℂ ) |
| 85 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑇 ⊆ 𝑆 ) |
| 86 | 84 85 | fssresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) |
| 87 | cnex | ⊢ ℂ ∈ V | |
| 88 | 80 2 | ssexd | ⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 89 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝑇 ∈ V ) |
| 90 | elmapg | ⊢ ( ( ℂ ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ↔ ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) ) | |
| 91 | 87 89 90 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ↔ ( 𝐴 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) ) |
| 92 | 86 91 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → ( 𝐴 ↾ 𝑇 ) ∈ ( ℂ ↑m 𝑇 ) ) |
| 93 | 92 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) : 𝑍 ⟶ ( ℂ ↑m 𝑇 ) ) |
| 94 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) = ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 95 | fvres | ⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐺 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 96 | 95 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑇 ) → ( ( 𝐺 ↾ 𝑇 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 97 | 78 2 | fssresd | ⊢ ( 𝜑 → ( 𝐺 ↾ 𝑇 ) : 𝑇 ⟶ ℂ ) |
| 98 | 1 66 93 94 96 97 88 | ulm2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑇 ( abs ‘ ( ( ( ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑟 ) ) |
| 99 | 52 81 98 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑍 ↦ 𝐴 ) ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ) ) |
| 100 | 4 99 | mpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 ↦ ( 𝐴 ↾ 𝑇 ) ) ( ⇝𝑢 ‘ 𝑇 ) ( 𝐺 ↾ 𝑇 ) ) |