This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmf | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 2 | ulmval | ⊢ ( 𝑆 ∈ V → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ↔ ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 5 | simp1 | ⊢ ( ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑛 ∈ ℤ ( 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝐺 : 𝑆 ⟶ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → ∃ 𝑛 ∈ ℤ 𝐹 : ( ℤ≥ ‘ 𝑛 ) ⟶ ( ℂ ↑m 𝑆 ) ) |