This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmshft.z | |- Z = ( ZZ>= ` M ) |
|
| ulmshft.w | |- W = ( ZZ>= ` ( M + K ) ) |
||
| ulmshft.m | |- ( ph -> M e. ZZ ) |
||
| ulmshft.k | |- ( ph -> K e. ZZ ) |
||
| ulmshft.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| ulmshft.h | |- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
||
| Assertion | ulmshft | |- ( ph -> ( F ( ~~>u ` S ) G <-> H ( ~~>u ` S ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmshft.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmshft.w | |- W = ( ZZ>= ` ( M + K ) ) |
|
| 3 | ulmshft.m | |- ( ph -> M e. ZZ ) |
|
| 4 | ulmshft.k | |- ( ph -> K e. ZZ ) |
|
| 5 | ulmshft.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 6 | ulmshft.h | |- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
|
| 7 | 1 2 3 4 5 6 | ulmshftlem | |- ( ph -> ( F ( ~~>u ` S ) G -> H ( ~~>u ` S ) G ) ) |
| 8 | eqid | |- ( ZZ>= ` ( ( M + K ) + -u K ) ) = ( ZZ>= ` ( ( M + K ) + -u K ) ) |
|
| 9 | 3 4 | zaddcld | |- ( ph -> ( M + K ) e. ZZ ) |
| 10 | 4 | znegcld | |- ( ph -> -u K e. ZZ ) |
| 11 | 5 | adantr | |- ( ( ph /\ n e. W ) -> F : Z --> ( CC ^m S ) ) |
| 12 | 3 | adantr | |- ( ( ph /\ n e. W ) -> M e. ZZ ) |
| 13 | 4 | adantr | |- ( ( ph /\ n e. W ) -> K e. ZZ ) |
| 14 | simpr | |- ( ( ph /\ n e. W ) -> n e. W ) |
|
| 15 | 14 2 | eleqtrdi | |- ( ( ph /\ n e. W ) -> n e. ( ZZ>= ` ( M + K ) ) ) |
| 16 | eluzsub | |- ( ( M e. ZZ /\ K e. ZZ /\ n e. ( ZZ>= ` ( M + K ) ) ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
|
| 17 | 12 13 15 16 | syl3anc | |- ( ( ph /\ n e. W ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
| 18 | 17 1 | eleqtrrdi | |- ( ( ph /\ n e. W ) -> ( n - K ) e. Z ) |
| 19 | 11 18 | ffvelcdmd | |- ( ( ph /\ n e. W ) -> ( F ` ( n - K ) ) e. ( CC ^m S ) ) |
| 20 | 6 19 | fmpt3d | |- ( ph -> H : W --> ( CC ^m S ) ) |
| 21 | simpr | |- ( ( ph /\ m e. Z ) -> m e. Z ) |
|
| 22 | 21 1 | eleqtrdi | |- ( ( ph /\ m e. Z ) -> m e. ( ZZ>= ` M ) ) |
| 23 | eluzelz | |- ( m e. ( ZZ>= ` M ) -> m e. ZZ ) |
|
| 24 | 22 23 | syl | |- ( ( ph /\ m e. Z ) -> m e. ZZ ) |
| 25 | 24 | zcnd | |- ( ( ph /\ m e. Z ) -> m e. CC ) |
| 26 | 4 | zcnd | |- ( ph -> K e. CC ) |
| 27 | 26 | adantr | |- ( ( ph /\ m e. Z ) -> K e. CC ) |
| 28 | 25 27 | subnegd | |- ( ( ph /\ m e. Z ) -> ( m - -u K ) = ( m + K ) ) |
| 29 | 28 | fveq2d | |- ( ( ph /\ m e. Z ) -> ( H ` ( m - -u K ) ) = ( H ` ( m + K ) ) ) |
| 30 | 6 | adantr | |- ( ( ph /\ m e. Z ) -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
| 31 | 30 | fveq1d | |- ( ( ph /\ m e. Z ) -> ( H ` ( m + K ) ) = ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) ) |
| 32 | 4 | adantr | |- ( ( ph /\ m e. Z ) -> K e. ZZ ) |
| 33 | eluzadd | |- ( ( m e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( m + K ) e. ( ZZ>= ` ( M + K ) ) ) |
|
| 34 | 22 32 33 | syl2anc | |- ( ( ph /\ m e. Z ) -> ( m + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 35 | 34 2 | eleqtrrdi | |- ( ( ph /\ m e. Z ) -> ( m + K ) e. W ) |
| 36 | fvoveq1 | |- ( n = ( m + K ) -> ( F ` ( n - K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
|
| 37 | eqid | |- ( n e. W |-> ( F ` ( n - K ) ) ) = ( n e. W |-> ( F ` ( n - K ) ) ) |
|
| 38 | fvex | |- ( F ` ( ( m + K ) - K ) ) e. _V |
|
| 39 | 36 37 38 | fvmpt | |- ( ( m + K ) e. W -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
| 40 | 35 39 | syl | |- ( ( ph /\ m e. Z ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
| 41 | 25 27 | pncand | |- ( ( ph /\ m e. Z ) -> ( ( m + K ) - K ) = m ) |
| 42 | 41 | fveq2d | |- ( ( ph /\ m e. Z ) -> ( F ` ( ( m + K ) - K ) ) = ( F ` m ) ) |
| 43 | 40 42 | eqtrd | |- ( ( ph /\ m e. Z ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` m ) ) |
| 44 | 29 31 43 | 3eqtrd | |- ( ( ph /\ m e. Z ) -> ( H ` ( m - -u K ) ) = ( F ` m ) ) |
| 45 | 44 | mpteq2dva | |- ( ph -> ( m e. Z |-> ( H ` ( m - -u K ) ) ) = ( m e. Z |-> ( F ` m ) ) ) |
| 46 | 3 | zcnd | |- ( ph -> M e. CC ) |
| 47 | 10 | zcnd | |- ( ph -> -u K e. CC ) |
| 48 | 46 26 47 | addassd | |- ( ph -> ( ( M + K ) + -u K ) = ( M + ( K + -u K ) ) ) |
| 49 | 26 | negidd | |- ( ph -> ( K + -u K ) = 0 ) |
| 50 | 49 | oveq2d | |- ( ph -> ( M + ( K + -u K ) ) = ( M + 0 ) ) |
| 51 | 46 | addridd | |- ( ph -> ( M + 0 ) = M ) |
| 52 | 48 50 51 | 3eqtrd | |- ( ph -> ( ( M + K ) + -u K ) = M ) |
| 53 | 52 | fveq2d | |- ( ph -> ( ZZ>= ` ( ( M + K ) + -u K ) ) = ( ZZ>= ` M ) ) |
| 54 | 53 1 | eqtr4di | |- ( ph -> ( ZZ>= ` ( ( M + K ) + -u K ) ) = Z ) |
| 55 | 54 | mpteq1d | |- ( ph -> ( m e. ( ZZ>= ` ( ( M + K ) + -u K ) ) |-> ( H ` ( m - -u K ) ) ) = ( m e. Z |-> ( H ` ( m - -u K ) ) ) ) |
| 56 | 5 | feqmptd | |- ( ph -> F = ( m e. Z |-> ( F ` m ) ) ) |
| 57 | 45 55 56 | 3eqtr4rd | |- ( ph -> F = ( m e. ( ZZ>= ` ( ( M + K ) + -u K ) ) |-> ( H ` ( m - -u K ) ) ) ) |
| 58 | 2 8 9 10 20 57 | ulmshftlem | |- ( ph -> ( H ( ~~>u ` S ) G -> F ( ~~>u ` S ) G ) ) |
| 59 | 7 58 | impbid | |- ( ph -> ( F ( ~~>u ` S ) G <-> H ( ~~>u ` S ) G ) ) |