This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uz11 | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | eleq2 | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 3 | eluzel2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 4 | 2 3 | biimtrdi | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) ) |
| 5 | 1 4 | mpan9 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 6 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 7 | eleq2 | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 8 | 6 7 | imbitrrid | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 9 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 10 | 8 9 | syl6 | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑀 ≤ 𝑁 ) ) |
| 11 | 1 2 | imbitrid | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 12 | eluzle | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) | |
| 13 | 11 12 | syl6 | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ℤ → 𝑁 ≤ 𝑀 ) ) |
| 14 | 10 13 | anim12d | ⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 15 | 14 | impl | ⊢ ( ( ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 16 | 15 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 17 | 16 | anassrs | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 18 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 19 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 20 | letri3 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 23 | 17 22 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → 𝑀 = 𝑁 ) |
| 24 | 5 23 | mpdan | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 = 𝑁 ) |
| 25 | 24 | ex | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → 𝑀 = 𝑁 ) ) |
| 26 | fveq2 | ⊢ ( 𝑀 = 𝑁 → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) | |
| 27 | 25 26 | impbid1 | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |