This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uhgrspansubgr : The edges of the graph S obtained by removing some edges of a hypergraph G are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr . (Contributed by AV, 18-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | ||
| uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | ||
| uhgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | ||
| Assertion | uhgrspansubgrlem | ⊢ ( 𝜑 → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | uhgrspan.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | uhgrspan.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) | |
| 4 | uhgrspan.q | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 5 | uhgrspan.r | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) | |
| 6 | uhgrspan.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 7 | edgval | ⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) | |
| 8 | 7 | eleq2i | ⊢ ( 𝑒 ∈ ( Edg ‘ 𝑆 ) ↔ 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ) |
| 9 | 2 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐸 ) |
| 10 | funres | ⊢ ( Fun 𝐸 → Fun ( 𝐸 ↾ 𝐴 ) ) | |
| 11 | 6 9 10 | 3syl | ⊢ ( 𝜑 → Fun ( 𝐸 ↾ 𝐴 ) ) |
| 12 | 5 | funeqd | ⊢ ( 𝜑 → ( Fun ( iEdg ‘ 𝑆 ) ↔ Fun ( 𝐸 ↾ 𝐴 ) ) ) |
| 13 | 11 12 | mpbird | ⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑆 ) ) |
| 14 | elrnrexdmb | ⊢ ( Fun ( iEdg ‘ 𝑆 ) → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐸 ↾ 𝐴 ) ) |
| 17 | 16 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑖 ) ) |
| 18 | 5 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐸 ↾ 𝐴 ) ) |
| 19 | dmres | ⊢ dom ( 𝐸 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐸 ) | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( 𝐴 ∩ dom 𝐸 ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ↔ 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) ) ) |
| 22 | elinel1 | ⊢ ( 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) → 𝑖 ∈ 𝐴 ) | |
| 23 | 21 22 | biimtrdi | ⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑖 ∈ 𝐴 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ 𝐴 ) |
| 25 | 24 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ↾ 𝐴 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 26 | 17 25 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 27 | elinel2 | ⊢ ( 𝑖 ∈ ( 𝐴 ∩ dom 𝐸 ) → 𝑖 ∈ dom 𝐸 ) | |
| 28 | 21 27 | biimtrdi | ⊢ ( 𝜑 → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑖 ∈ dom 𝐸 ) ) |
| 29 | 28 | imp | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ dom 𝐸 ) |
| 30 | 1 2 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 31 | 6 29 30 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 32 | 4 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑆 ) = 𝒫 𝑉 ) |
| 33 | 32 | eleq2d | ⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ) ) |
| 35 | fvex | ⊢ ( 𝐸 ‘ 𝑖 ) ∈ V | |
| 36 | 35 | elpw | ⊢ ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 𝑉 ↔ ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) |
| 37 | 34 36 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( 𝐸 ‘ 𝑖 ) ⊆ 𝑉 ) ) |
| 38 | 31 37 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 39 | 26 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 40 | eleq1 | ⊢ ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) | |
| 41 | 39 40 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 42 | 41 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) 𝑒 = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 43 | 15 42 | sylbid | ⊢ ( 𝜑 → ( 𝑒 ∈ ran ( iEdg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 44 | 8 43 | biimtrid | ⊢ ( 𝜑 → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 45 | 44 | ssrdv | ⊢ ( 𝜑 → ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) |