This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uhgrspansubgr : The edges of the graph S obtained by removing some edges of a hypergraph G are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr . (Contributed by AV, 18-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrspan.v | |- V = ( Vtx ` G ) |
|
| uhgrspan.e | |- E = ( iEdg ` G ) |
||
| uhgrspan.s | |- ( ph -> S e. W ) |
||
| uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
||
| uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
||
| uhgrspan.g | |- ( ph -> G e. UHGraph ) |
||
| Assertion | uhgrspansubgrlem | |- ( ph -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrspan.v | |- V = ( Vtx ` G ) |
|
| 2 | uhgrspan.e | |- E = ( iEdg ` G ) |
|
| 3 | uhgrspan.s | |- ( ph -> S e. W ) |
|
| 4 | uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 5 | uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
|
| 6 | uhgrspan.g | |- ( ph -> G e. UHGraph ) |
|
| 7 | edgval | |- ( Edg ` S ) = ran ( iEdg ` S ) |
|
| 8 | 7 | eleq2i | |- ( e e. ( Edg ` S ) <-> e e. ran ( iEdg ` S ) ) |
| 9 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun E ) |
| 10 | funres | |- ( Fun E -> Fun ( E |` A ) ) |
|
| 11 | 6 9 10 | 3syl | |- ( ph -> Fun ( E |` A ) ) |
| 12 | 5 | funeqd | |- ( ph -> ( Fun ( iEdg ` S ) <-> Fun ( E |` A ) ) ) |
| 13 | 11 12 | mpbird | |- ( ph -> Fun ( iEdg ` S ) ) |
| 14 | elrnrexdmb | |- ( Fun ( iEdg ` S ) -> ( e e. ran ( iEdg ` S ) <-> E. i e. dom ( iEdg ` S ) e = ( ( iEdg ` S ) ` i ) ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( e e. ran ( iEdg ` S ) <-> E. i e. dom ( iEdg ` S ) e = ( ( iEdg ` S ) ` i ) ) ) |
| 16 | 5 | adantr | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( iEdg ` S ) = ( E |` A ) ) |
| 17 | 16 | fveq1d | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` i ) = ( ( E |` A ) ` i ) ) |
| 18 | 5 | dmeqd | |- ( ph -> dom ( iEdg ` S ) = dom ( E |` A ) ) |
| 19 | dmres | |- dom ( E |` A ) = ( A i^i dom E ) |
|
| 20 | 18 19 | eqtrdi | |- ( ph -> dom ( iEdg ` S ) = ( A i^i dom E ) ) |
| 21 | 20 | eleq2d | |- ( ph -> ( i e. dom ( iEdg ` S ) <-> i e. ( A i^i dom E ) ) ) |
| 22 | elinel1 | |- ( i e. ( A i^i dom E ) -> i e. A ) |
|
| 23 | 21 22 | biimtrdi | |- ( ph -> ( i e. dom ( iEdg ` S ) -> i e. A ) ) |
| 24 | 23 | imp | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> i e. A ) |
| 25 | 24 | fvresd | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( E |` A ) ` i ) = ( E ` i ) ) |
| 26 | 17 25 | eqtrd | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` i ) = ( E ` i ) ) |
| 27 | elinel2 | |- ( i e. ( A i^i dom E ) -> i e. dom E ) |
|
| 28 | 21 27 | biimtrdi | |- ( ph -> ( i e. dom ( iEdg ` S ) -> i e. dom E ) ) |
| 29 | 28 | imp | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> i e. dom E ) |
| 30 | 1 2 | uhgrss | |- ( ( G e. UHGraph /\ i e. dom E ) -> ( E ` i ) C_ V ) |
| 31 | 6 29 30 | syl2an2r | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( E ` i ) C_ V ) |
| 32 | 4 | pweqd | |- ( ph -> ~P ( Vtx ` S ) = ~P V ) |
| 33 | 32 | eleq2d | |- ( ph -> ( ( E ` i ) e. ~P ( Vtx ` S ) <-> ( E ` i ) e. ~P V ) ) |
| 34 | 33 | adantr | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( E ` i ) e. ~P ( Vtx ` S ) <-> ( E ` i ) e. ~P V ) ) |
| 35 | fvex | |- ( E ` i ) e. _V |
|
| 36 | 35 | elpw | |- ( ( E ` i ) e. ~P V <-> ( E ` i ) C_ V ) |
| 37 | 34 36 | bitrdi | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( E ` i ) e. ~P ( Vtx ` S ) <-> ( E ` i ) C_ V ) ) |
| 38 | 31 37 | mpbird | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( E ` i ) e. ~P ( Vtx ` S ) ) |
| 39 | 26 38 | eqeltrd | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` i ) e. ~P ( Vtx ` S ) ) |
| 40 | eleq1 | |- ( e = ( ( iEdg ` S ) ` i ) -> ( e e. ~P ( Vtx ` S ) <-> ( ( iEdg ` S ) ` i ) e. ~P ( Vtx ` S ) ) ) |
|
| 41 | 39 40 | syl5ibrcom | |- ( ( ph /\ i e. dom ( iEdg ` S ) ) -> ( e = ( ( iEdg ` S ) ` i ) -> e e. ~P ( Vtx ` S ) ) ) |
| 42 | 41 | rexlimdva | |- ( ph -> ( E. i e. dom ( iEdg ` S ) e = ( ( iEdg ` S ) ` i ) -> e e. ~P ( Vtx ` S ) ) ) |
| 43 | 15 42 | sylbid | |- ( ph -> ( e e. ran ( iEdg ` S ) -> e e. ~P ( Vtx ` S ) ) ) |
| 44 | 8 43 | biimtrid | |- ( ph -> ( e e. ( Edg ` S ) -> e e. ~P ( Vtx ` S ) ) ) |
| 45 | 44 | ssrdv | |- ( ph -> ( Edg ` S ) C_ ~P ( Vtx ` S ) ) |