This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex is adjacent to two different vertices in a hypergraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| uhgr2edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| Assertion | uhgr2edg | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1oedg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrf1oedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | uhgr2edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 4 | simp1l | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐺 ∈ UHGraph ) | |
| 5 | simp1r | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐴 ≠ 𝐵 ) | |
| 6 | simp23 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝑁 ∈ 𝑉 ) | |
| 7 | simp21 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → 𝐴 ∈ 𝑉 ) | |
| 8 | 3simpc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 10 | 6 7 9 | jca31 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 11 | 4 5 10 | jca31 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ) |
| 12 | simp3 | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) | |
| 13 | 2 | a1i | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 = ( Edg ‘ 𝐺 ) ) |
| 14 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 15 | 14 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 16 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 17 | 16 | a1i | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) = 𝐼 ) |
| 18 | 17 | rneqd | ⊢ ( 𝐺 ∈ UHGraph → ran ( iEdg ‘ 𝐺 ) = ran 𝐼 ) |
| 19 | 13 15 18 | 3eqtrd | ⊢ ( 𝐺 ∈ UHGraph → 𝐸 = ran 𝐼 ) |
| 20 | 19 | eleq2d | ⊢ ( 𝐺 ∈ UHGraph → ( { 𝑁 , 𝐴 } ∈ 𝐸 ↔ { 𝑁 , 𝐴 } ∈ ran 𝐼 ) ) |
| 21 | 19 | eleq2d | ⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝑁 } ∈ 𝐸 ↔ { 𝐵 , 𝑁 } ∈ ran 𝐼 ) ) |
| 22 | 20 21 | anbi12d | ⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ↔ ( { 𝑁 , 𝐴 } ∈ ran 𝐼 ∧ { 𝐵 , 𝑁 } ∈ ran 𝐼 ) ) ) |
| 23 | 1 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun 𝐼 ) |
| 24 | 23 | funfnd | ⊢ ( 𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼 ) |
| 25 | fvelrnb | ⊢ ( 𝐼 Fn dom 𝐼 → ( { 𝑁 , 𝐴 } ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ) ) | |
| 26 | fvelrnb | ⊢ ( 𝐼 Fn dom 𝐼 → ( { 𝐵 , 𝑁 } ∈ ran 𝐼 ↔ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝐼 Fn dom 𝐼 → ( ( { 𝑁 , 𝐴 } ∈ ran 𝐼 ∧ { 𝐵 , 𝑁 } ∈ ran 𝐼 ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) ) |
| 28 | 24 27 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝑁 , 𝐴 } ∈ ran 𝐼 ∧ { 𝐵 , 𝑁 } ∈ ran 𝐼 ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) ) |
| 29 | 22 28 | bitrd | ⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) ) |
| 31 | reeanv | ⊢ ( ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ↔ ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) | |
| 32 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ↔ ( 𝐼 ‘ 𝑦 ) = { 𝑁 , 𝐴 } ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ↔ ( ( 𝐼 ‘ 𝑦 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) ) |
| 34 | eqtr2 | ⊢ ( ( ( 𝐼 ‘ 𝑦 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → { 𝑁 , 𝐴 } = { 𝐵 , 𝑁 } ) | |
| 35 | prcom | ⊢ { 𝐵 , 𝑁 } = { 𝑁 , 𝐵 } | |
| 36 | 35 | eqeq2i | ⊢ ( { 𝑁 , 𝐴 } = { 𝐵 , 𝑁 } ↔ { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } ) |
| 37 | preq12bg | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } ↔ ( ( 𝑁 = 𝑁 ∧ 𝐴 = 𝐵 ) ∨ ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) ) ) ) | |
| 38 | 37 | ancom2s | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) → ( { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } ↔ ( ( 𝑁 = 𝑁 ∧ 𝐴 = 𝐵 ) ∨ ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) ) ) ) |
| 39 | eqneqall | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦 ) ) | |
| 40 | 39 | adantl | ⊢ ( ( 𝑁 = 𝑁 ∧ 𝐴 = 𝐵 ) → ( 𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 41 | eqtr | ⊢ ( ( 𝐴 = 𝑁 ∧ 𝑁 = 𝐵 ) → 𝐴 = 𝐵 ) | |
| 42 | 41 | ancoms | ⊢ ( ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) → 𝐴 = 𝐵 ) |
| 43 | 42 39 | syl | ⊢ ( ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) → ( 𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 44 | 40 43 | jaoi | ⊢ ( ( ( 𝑁 = 𝑁 ∧ 𝐴 = 𝐵 ) ∨ ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) ) → ( 𝐴 ≠ 𝐵 → 𝑥 ≠ 𝑦 ) ) |
| 45 | 44 | adantld | ⊢ ( ( ( 𝑁 = 𝑁 ∧ 𝐴 = 𝐵 ) ∨ ( 𝑁 = 𝐵 ∧ 𝐴 = 𝑁 ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) → 𝑥 ≠ 𝑦 ) ) |
| 46 | 38 45 | biimtrdi | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) → ( { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } → ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) → 𝑥 ≠ 𝑦 ) ) ) |
| 47 | 46 | com3l | ⊢ ( { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } → ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑥 ≠ 𝑦 ) ) ) |
| 48 | 47 | impd | ⊢ ( { 𝑁 , 𝐴 } = { 𝑁 , 𝐵 } → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑥 ≠ 𝑦 ) ) |
| 49 | 36 48 | sylbi | ⊢ ( { 𝑁 , 𝐴 } = { 𝐵 , 𝑁 } → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑥 ≠ 𝑦 ) ) |
| 50 | 34 49 | syl | ⊢ ( ( ( 𝐼 ‘ 𝑦 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑥 ≠ 𝑦 ) ) |
| 51 | 33 50 | biimtrdi | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑥 ≠ 𝑦 ) ) ) |
| 52 | 51 | impcomd | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → 𝑥 ≠ 𝑦 ) ) |
| 53 | ax-1 | ⊢ ( 𝑥 ≠ 𝑦 → ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → 𝑥 ≠ 𝑦 ) ) | |
| 54 | 52 53 | pm2.61ine | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → 𝑥 ≠ 𝑦 ) |
| 55 | prid1g | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ { 𝑁 , 𝐴 } ) | |
| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑁 ∈ { 𝑁 , 𝐴 } ) |
| 57 | 56 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ { 𝑁 , 𝐴 } ) |
| 58 | eleq2 | ⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } → ( 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ↔ 𝑁 ∈ { 𝑁 , 𝐴 } ) ) | |
| 59 | 57 58 | imbitrrid | ⊢ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) ) |
| 61 | 60 | impcom | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ) |
| 62 | prid2g | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ { 𝐵 , 𝑁 } ) | |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑁 ∈ { 𝐵 , 𝑁 } ) |
| 64 | 63 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ { 𝐵 , 𝑁 } ) |
| 65 | eleq2 | ⊢ ( ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } → ( 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ↔ 𝑁 ∈ { 𝐵 , 𝑁 } ) ) | |
| 66 | 64 65 | imbitrrid | ⊢ ( ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 68 | 67 | impcom | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) |
| 69 | 54 61 68 | 3jca | ⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) ∧ ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) ) → ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |
| 70 | 69 | ex | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 71 | 70 | reximdv | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ∃ 𝑦 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 72 | 71 | reximdv | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 73 | 31 72 | biimtrrid | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ( ∃ 𝑥 ∈ dom 𝐼 ( 𝐼 ‘ 𝑥 ) = { 𝑁 , 𝐴 } ∧ ∃ 𝑦 ∈ dom 𝐼 ( 𝐼 ‘ 𝑦 ) = { 𝐵 , 𝑁 } ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 74 | 30 73 | sylbid | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) → ( ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 75 | 11 12 74 | sylc | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ ( { 𝑁 , 𝐴 } ∈ 𝐸 ∧ { 𝐵 , 𝑁 } ∈ 𝐸 ) ) → ∃ 𝑥 ∈ dom 𝐼 ∃ 𝑦 ∈ dom 𝐼 ( 𝑥 ≠ 𝑦 ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑥 ) ∧ 𝑁 ∈ ( 𝐼 ‘ 𝑦 ) ) ) |