This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009) (Proof shortened by Mario Carneiro, 12-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilcmp | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | ⊢ ( 𝑓 ∈ ( UFil ‘ ∪ 𝐽 ) → 𝑓 ∈ ( Fil ‘ ∪ 𝐽 ) ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | fclscmpi | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑓 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝐽 fClus 𝑓 ) ≠ ∅ ) |
| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐽 ∈ Comp ∧ 𝑓 ∈ ( UFil ‘ ∪ 𝐽 ) ) → ( 𝐽 fClus 𝑓 ) ≠ ∅ ) |
| 5 | 4 | ralrimiva | ⊢ ( 𝐽 ∈ Comp → ∀ 𝑓 ∈ ( UFil ‘ ∪ 𝐽 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ) |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( UFil ‘ 𝑋 ) = ( UFil ‘ ∪ 𝐽 ) ) |
| 8 | 7 | raleqdv | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( UFil ‘ ∪ 𝐽 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( UFil ‘ ∪ 𝐽 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ) ) |
| 10 | 5 9 | imbitrrid | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp → ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ) ) |
| 11 | ufli | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) | |
| 12 | 11 | adantlr | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) |
| 13 | r19.29 | ⊢ ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) → ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐽 fClus 𝑓 ) ≠ ∅ ∧ 𝑔 ⊆ 𝑓 ) ) | |
| 14 | simpllr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 15 | simplr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) | |
| 16 | simprr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) ) → 𝑔 ⊆ 𝑓 ) | |
| 17 | fclsss2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) → ( 𝐽 fClus 𝑓 ) ⊆ ( 𝐽 fClus 𝑔 ) ) | |
| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) ) → ( 𝐽 fClus 𝑓 ) ⊆ ( 𝐽 fClus 𝑔 ) ) |
| 19 | ssn0 | ⊢ ( ( ( 𝐽 fClus 𝑓 ) ⊆ ( 𝐽 fClus 𝑔 ) ∧ ( 𝐽 fClus 𝑓 ) ≠ ∅ ) → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) | |
| 20 | 19 | ex | ⊢ ( ( 𝐽 fClus 𝑓 ) ⊆ ( 𝐽 fClus 𝑔 ) → ( ( 𝐽 fClus 𝑓 ) ≠ ∅ → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 21 | 18 20 | syl | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) ∧ 𝑔 ⊆ 𝑓 ) ) → ( ( 𝐽 fClus 𝑓 ) ≠ ∅ → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 22 | 21 | expr | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( 𝑔 ⊆ 𝑓 → ( ( 𝐽 fClus 𝑓 ) ≠ ∅ → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) ) |
| 23 | 22 | impcomd | ⊢ ( ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑓 ∈ ( UFil ‘ 𝑋 ) ) → ( ( ( 𝐽 fClus 𝑓 ) ≠ ∅ ∧ 𝑔 ⊆ 𝑓 ) → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 24 | 23 | rexlimdva | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ( ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( ( 𝐽 fClus 𝑓 ) ≠ ∅ ∧ 𝑔 ⊆ 𝑓 ) → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 25 | 13 24 | syl5 | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ( ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ∧ ∃ 𝑓 ∈ ( UFil ‘ 𝑋 ) 𝑔 ⊆ 𝑓 ) → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 26 | 12 25 | mpan2d | ⊢ ( ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ → ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 27 | 26 | ralrimdva | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ → ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 28 | fclscmp | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐽 fClus 𝑔 ) ≠ ∅ ) ) |
| 30 | 27 29 | sylibrd | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ → 𝐽 ∈ Comp ) ) |
| 31 | 10 30 | impbid | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ) ) |
| 32 | uffclsflim | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ( 𝐽 fClus 𝑓 ) = ( 𝐽 fLim 𝑓 ) ) | |
| 33 | 32 | neeq1d | ⊢ ( 𝑓 ∈ ( UFil ‘ 𝑋 ) → ( ( 𝐽 fClus 𝑓 ) ≠ ∅ ↔ ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 34 | 33 | ralbiia | ⊢ ( ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fClus 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) |
| 35 | 31 34 | bitrdi | ⊢ ( ( 𝑋 ∈ UFL ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝐽 ∈ Comp ↔ ∀ 𝑓 ∈ ( UFil ‘ 𝑋 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |