This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009) (Proof shortened by Mario Carneiro, 12-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ufilcmp | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | |- ( f e. ( UFil ` U. J ) -> f e. ( Fil ` U. J ) ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | fclscmpi | |- ( ( J e. Comp /\ f e. ( Fil ` U. J ) ) -> ( J fClus f ) =/= (/) ) |
| 4 | 1 3 | sylan2 | |- ( ( J e. Comp /\ f e. ( UFil ` U. J ) ) -> ( J fClus f ) =/= (/) ) |
| 5 | 4 | ralrimiva | |- ( J e. Comp -> A. f e. ( UFil ` U. J ) ( J fClus f ) =/= (/) ) |
| 6 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 7 | 6 | fveq2d | |- ( J e. ( TopOn ` X ) -> ( UFil ` X ) = ( UFil ` U. J ) ) |
| 8 | 7 | raleqdv | |- ( J e. ( TopOn ` X ) -> ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) <-> A. f e. ( UFil ` U. J ) ( J fClus f ) =/= (/) ) ) |
| 9 | 8 | adantl | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) <-> A. f e. ( UFil ` U. J ) ( J fClus f ) =/= (/) ) ) |
| 10 | 5 9 | imbitrrid | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp -> A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) ) ) |
| 11 | ufli | |- ( ( X e. UFL /\ g e. ( Fil ` X ) ) -> E. f e. ( UFil ` X ) g C_ f ) |
|
| 12 | 11 | adantlr | |- ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) -> E. f e. ( UFil ` X ) g C_ f ) |
| 13 | r19.29 | |- ( ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) /\ E. f e. ( UFil ` X ) g C_ f ) -> E. f e. ( UFil ` X ) ( ( J fClus f ) =/= (/) /\ g C_ f ) ) |
|
| 14 | simpllr | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ ( f e. ( UFil ` X ) /\ g C_ f ) ) -> J e. ( TopOn ` X ) ) |
|
| 15 | simplr | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ ( f e. ( UFil ` X ) /\ g C_ f ) ) -> g e. ( Fil ` X ) ) |
|
| 16 | simprr | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ ( f e. ( UFil ` X ) /\ g C_ f ) ) -> g C_ f ) |
|
| 17 | fclsss2 | |- ( ( J e. ( TopOn ` X ) /\ g e. ( Fil ` X ) /\ g C_ f ) -> ( J fClus f ) C_ ( J fClus g ) ) |
|
| 18 | 14 15 16 17 | syl3anc | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ ( f e. ( UFil ` X ) /\ g C_ f ) ) -> ( J fClus f ) C_ ( J fClus g ) ) |
| 19 | ssn0 | |- ( ( ( J fClus f ) C_ ( J fClus g ) /\ ( J fClus f ) =/= (/) ) -> ( J fClus g ) =/= (/) ) |
|
| 20 | 19 | ex | |- ( ( J fClus f ) C_ ( J fClus g ) -> ( ( J fClus f ) =/= (/) -> ( J fClus g ) =/= (/) ) ) |
| 21 | 18 20 | syl | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ ( f e. ( UFil ` X ) /\ g C_ f ) ) -> ( ( J fClus f ) =/= (/) -> ( J fClus g ) =/= (/) ) ) |
| 22 | 21 | expr | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ f e. ( UFil ` X ) ) -> ( g C_ f -> ( ( J fClus f ) =/= (/) -> ( J fClus g ) =/= (/) ) ) ) |
| 23 | 22 | impcomd | |- ( ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) /\ f e. ( UFil ` X ) ) -> ( ( ( J fClus f ) =/= (/) /\ g C_ f ) -> ( J fClus g ) =/= (/) ) ) |
| 24 | 23 | rexlimdva | |- ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) -> ( E. f e. ( UFil ` X ) ( ( J fClus f ) =/= (/) /\ g C_ f ) -> ( J fClus g ) =/= (/) ) ) |
| 25 | 13 24 | syl5 | |- ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) -> ( ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) /\ E. f e. ( UFil ` X ) g C_ f ) -> ( J fClus g ) =/= (/) ) ) |
| 26 | 12 25 | mpan2d | |- ( ( ( X e. UFL /\ J e. ( TopOn ` X ) ) /\ g e. ( Fil ` X ) ) -> ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) -> ( J fClus g ) =/= (/) ) ) |
| 27 | 26 | ralrimdva | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) -> A. g e. ( Fil ` X ) ( J fClus g ) =/= (/) ) ) |
| 28 | fclscmp | |- ( J e. ( TopOn ` X ) -> ( J e. Comp <-> A. g e. ( Fil ` X ) ( J fClus g ) =/= (/) ) ) |
|
| 29 | 28 | adantl | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. g e. ( Fil ` X ) ( J fClus g ) =/= (/) ) ) |
| 30 | 27 29 | sylibrd | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) -> J e. Comp ) ) |
| 31 | 10 30 | impbid | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) ) ) |
| 32 | uffclsflim | |- ( f e. ( UFil ` X ) -> ( J fClus f ) = ( J fLim f ) ) |
|
| 33 | 32 | neeq1d | |- ( f e. ( UFil ` X ) -> ( ( J fClus f ) =/= (/) <-> ( J fLim f ) =/= (/) ) ) |
| 34 | 33 | ralbiia | |- ( A. f e. ( UFil ` X ) ( J fClus f ) =/= (/) <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) |
| 35 | 31 34 | bitrdi | |- ( ( X e. UFL /\ J e. ( TopOn ` X ) ) -> ( J e. Comp <-> A. f e. ( UFil ` X ) ( J fLim f ) =/= (/) ) ) |