This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of cluster points of a function. (Contributed by Jeff Hankins, 24-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fcf | ⊢ fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) ) |
| 3 | simprl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑗 = 𝐽 ) | |
| 4 | 3 | unieqd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 5 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 4 6 | eqtr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑗 = 𝑋 ) |
| 8 | unieq | ⊢ ( 𝑓 = 𝐿 → ∪ 𝑓 = ∪ 𝐿 ) | |
| 9 | 8 | ad2antll | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑓 = ∪ 𝐿 ) |
| 10 | filunibas | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → ∪ 𝐿 = 𝑌 ) | |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝐿 = 𝑌 ) |
| 12 | 9 11 | eqtrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ∪ 𝑓 = 𝑌 ) |
| 13 | 7 12 | oveq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ∪ 𝑗 ↑m ∪ 𝑓 ) = ( 𝑋 ↑m 𝑌 ) ) |
| 14 | 7 | oveq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ∪ 𝑗 FilMap 𝑔 ) = ( 𝑋 FilMap 𝑔 ) ) |
| 15 | simprr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → 𝑓 = 𝐿 ) | |
| 16 | 14 15 | fveq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) = ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) |
| 17 | 3 16 | oveq12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) |
| 18 | 13 17 | mpteq12dv | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐿 ) ) → ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
| 19 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
| 21 | fvssunirn | ⊢ ( Fil ‘ 𝑌 ) ⊆ ∪ ran Fil | |
| 22 | 21 | sseli | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ∪ ran Fil ) |
| 23 | 22 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → 𝐿 ∈ ∪ ran Fil ) |
| 24 | ovex | ⊢ ( 𝑋 ↑m 𝑌 ) ∈ V | |
| 25 | 24 | mptex | ⊢ ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ∈ V |
| 26 | 25 | a1i | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ∈ V ) |
| 27 | 2 18 20 23 26 | ovmpod | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClusf 𝐿 ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fClusf 𝐿 ) = ( 𝑔 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) ) ) |
| 29 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → 𝑔 = 𝐹 ) | |
| 30 | 29 | oveq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( 𝑋 FilMap 𝑔 ) = ( 𝑋 FilMap 𝐹 ) ) |
| 31 | 30 | fveq1d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑔 = 𝐹 ) → ( 𝐽 fClus ( ( 𝑋 FilMap 𝑔 ) ‘ 𝐿 ) ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 33 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 34 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) | |
| 35 | elmapg | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿 ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) | |
| 36 | 33 34 35 | syl2an | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 37 | 36 | biimp3ar | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ) |
| 38 | ovexd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ∈ V ) | |
| 39 | 28 32 37 38 | fvmptd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |