This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009) (Revised by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffclsflim | |- ( F e. ( UFil ` X ) -> ( J fClus F ) = ( J fLim F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil | |- ( F e. ( UFil ` X ) -> F e. ( Fil ` X ) ) |
|
| 2 | fclsfnflim | |- ( F e. ( Fil ` X ) -> ( x e. ( J fClus F ) <-> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( UFil ` X ) -> ( x e. ( J fClus F ) <-> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) ) |
| 4 | 3 | biimpa | |- ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) -> E. f e. ( Fil ` X ) ( F C_ f /\ x e. ( J fLim f ) ) ) |
| 5 | simprrr | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> x e. ( J fLim f ) ) |
|
| 6 | simpll | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F e. ( UFil ` X ) ) |
|
| 7 | simprl | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> f e. ( Fil ` X ) ) |
|
| 8 | simprrl | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F C_ f ) |
|
| 9 | ufilmax | |- ( ( F e. ( UFil ` X ) /\ f e. ( Fil ` X ) /\ F C_ f ) -> F = f ) |
|
| 10 | 6 7 8 9 | syl3anc | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> F = f ) |
| 11 | 10 | oveq2d | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> ( J fLim F ) = ( J fLim f ) ) |
| 12 | 5 11 | eleqtrrd | |- ( ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) /\ ( f e. ( Fil ` X ) /\ ( F C_ f /\ x e. ( J fLim f ) ) ) ) -> x e. ( J fLim F ) ) |
| 13 | 4 12 | rexlimddv | |- ( ( F e. ( UFil ` X ) /\ x e. ( J fClus F ) ) -> x e. ( J fLim F ) ) |
| 14 | 13 | ex | |- ( F e. ( UFil ` X ) -> ( x e. ( J fClus F ) -> x e. ( J fLim F ) ) ) |
| 15 | 14 | ssrdv | |- ( F e. ( UFil ` X ) -> ( J fClus F ) C_ ( J fLim F ) ) |
| 16 | flimfcls | |- ( J fLim F ) C_ ( J fClus F ) |
|
| 17 | 16 | a1i | |- ( F e. ( UFil ` X ) -> ( J fLim F ) C_ ( J fClus F ) ) |
| 18 | 15 17 | eqssd | |- ( F e. ( UFil ` X ) -> ( J fClus F ) = ( J fLim F ) ) |