This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity is uniformly continuous from a uniform structure to itself. Example 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iducn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 | |
| 2 | f1of | ⊢ ( ( I ↾ 𝑋 ) : 𝑋 –1-1-onto→ 𝑋 → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) | |
| 3 | 1 2 | mp1i | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ) |
| 4 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ∈ 𝑈 ) | |
| 5 | fvresi | ⊢ ( 𝑥 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) = 𝑥 ) | |
| 6 | fvresi | ⊢ ( 𝑦 ∈ 𝑋 → ( ( I ↾ 𝑋 ) ‘ 𝑦 ) = 𝑦 ) | |
| 7 | 5 6 | breqan12d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ↔ 𝑥 𝑠 𝑦 ) ) |
| 8 | 7 | biimprd | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 10 | 9 | ralrimivva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 11 | breq | ⊢ ( 𝑟 = 𝑠 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑠 𝑦 ) ) | |
| 12 | 11 | imbi1d | ⊢ ( 𝑟 = 𝑠 → ( ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 13 | 12 | 2ralbidv | ⊢ ( 𝑟 = 𝑠 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 14 | 13 | rspcev | ⊢ ( ( 𝑠 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑠 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 15 | 4 10 14 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 16 | 15 | ralrimiva | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 17 | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) ) | |
| 18 | 17 | anidms | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ↔ ( ( I ↾ 𝑋 ) : 𝑋 ⟶ 𝑋 ∧ ∀ 𝑠 ∈ 𝑈 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( ( I ↾ 𝑋 ) ‘ 𝑥 ) 𝑠 ( ( I ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) ) |
| 19 | 3 16 18 | mpbir2and | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( I ↾ 𝑋 ) ∈ ( 𝑈 Cnu 𝑈 ) ) |