This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | ||
| ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | ||
| ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
| ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | ||
| Assertion | ucnima | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucnprima.1 | ⊢ ( 𝜑 → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | ucnprima.2 | ⊢ ( 𝜑 → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) | |
| 3 | ucnprima.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) | |
| 4 | ucnprima.4 | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
| 5 | ucnprima.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑋 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) | |
| 6 | breq | ⊢ ( 𝑤 = 𝑊 → ( ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 7 | 6 | imbi2d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 | 8 | rexralbidv | ⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 10 | isucn | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 12 | 3 11 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | simprd | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑉 ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑤 ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 9 13 4 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝜑 ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 17 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 18 | 1 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) |
| 19 | 18 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
| 20 | 19 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) |
| 21 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → 𝑝 ∈ 𝑟 ) | |
| 22 | simplr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) | |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) | |
| 24 | elxp2 | ⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 ) |
| 26 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 𝑥 , 𝑦 〉 ) | |
| 27 | 26 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) ) |
| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) ) |
| 29 | df-br | ⊢ ( 𝑥 𝑟 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) | |
| 30 | 28 29 | bitr4di | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑝 ∈ 𝑟 ↔ 𝑥 𝑟 𝑦 ) ) |
| 31 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 ∈ ( 𝑋 × 𝑋 ) ) | |
| 32 | opex | ⊢ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ∈ V | |
| 33 | 1 2 3 4 5 | ucnimalem | ⊢ 𝐺 = ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ↦ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
| 34 | 33 | fvmpt2 | ⊢ ( ( 𝑝 ∈ ( 𝑋 × 𝑋 ) ∧ 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ∈ V ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
| 35 | 31 32 34 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 𝑥 , 𝑦 〉 ) | |
| 37 | 1st2nd2 | ⊢ ( 𝑝 ∈ ( 𝑋 × 𝑋 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) | |
| 38 | 31 37 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 39 | 36 38 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 〈 𝑥 , 𝑦 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 40 | vex | ⊢ 𝑥 ∈ V | |
| 41 | vex | ⊢ 𝑦 ∈ V | |
| 42 | 40 41 | opth | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ↔ ( 𝑥 = ( 1st ‘ 𝑝 ) ∧ 𝑦 = ( 2nd ‘ 𝑝 ) ) ) |
| 43 | 39 42 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝑥 = ( 1st ‘ 𝑝 ) ∧ 𝑦 = ( 2nd ‘ 𝑝 ) ) ) |
| 44 | 43 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑥 = ( 1st ‘ 𝑝 ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) ) |
| 46 | 43 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 𝑦 = ( 2nd ‘ 𝑝 ) ) |
| 47 | 46 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) ) |
| 48 | 45 47 | opeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ ( 1st ‘ 𝑝 ) ) , ( 𝐹 ‘ ( 2nd ‘ 𝑝 ) ) 〉 ) |
| 49 | 35 48 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( 𝐺 ‘ 𝑝 ) = 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ) |
| 50 | 49 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ 𝑊 ) ) |
| 51 | df-br | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ 𝑊 ) | |
| 52 | 50 51 | bitr4di | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ↔ ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) |
| 53 | 30 52 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ↔ ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 54 | 53 | exbiri | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
| 55 | 54 | reximdv | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
| 56 | 55 | reximdv | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 𝑝 = 〈 𝑥 , 𝑦 〉 → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
| 57 | 25 56 | mpd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) |
| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) |
| 59 | 22 58 | r19.29d2r | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) ) |
| 60 | pm3.35 | ⊢ ( ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) | |
| 61 | 60 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 62 | 61 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 63 | 59 62 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) → ( 𝑝 ∈ 𝑟 → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 64 | 63 | imp | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ ( 𝑋 × 𝑋 ) ) ∧ 𝑝 ∈ 𝑟 ) → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
| 65 | 15 16 20 21 64 | syl1111anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) ∧ 𝑝 ∈ 𝑟 ) → ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
| 66 | 65 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
| 67 | 66 | ex | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 68 | 67 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹 ‘ 𝑥 ) 𝑊 ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 69 | 14 68 | mpd | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) |
| 70 | 5 | mpofun | ⊢ Fun 𝐺 |
| 71 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ∈ V | |
| 72 | 5 71 | dmmpo | ⊢ dom 𝐺 = ( 𝑋 × 𝑋 ) |
| 73 | 18 72 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → 𝑟 ⊆ dom 𝐺 ) |
| 74 | funimass4 | ⊢ ( ( Fun 𝐺 ∧ 𝑟 ⊆ dom 𝐺 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) | |
| 75 | 70 73 74 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ↔ ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ) ) |
| 76 | 75 | biimprd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑈 ) → ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) |
| 77 | 76 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) |
| 78 | r19.29r | ⊢ ( ( ∃ 𝑟 ∈ 𝑈 ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ∀ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) ) | |
| 79 | 69 77 78 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) ) |
| 80 | pm3.35 | ⊢ ( ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) | |
| 81 | 80 | reximi | ⊢ ( ∃ 𝑟 ∈ 𝑈 ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 ∧ ( ∀ 𝑝 ∈ 𝑟 ( 𝐺 ‘ 𝑝 ) ∈ 𝑊 → ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) ) → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |
| 82 | 79 81 | syl | ⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑈 ( 𝐺 “ 𝑟 ) ⊆ 𝑊 ) |