This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the existence of transitive closures tz9.1 : the intersection of all transitive sets containing A is a set. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz9.1.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tz9.1c | ⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.1.1 | ⊢ 𝐴 ∈ V | |
| 2 | eqid | ⊢ ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) | |
| 3 | eqid | ⊢ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) | |
| 4 | 1 2 3 | trcl | ⊢ ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) ) |
| 5 | 3simpa | ⊢ ( ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) ) → ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) | |
| 6 | omex | ⊢ ω ∈ V | |
| 7 | fvex | ⊢ ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V | |
| 8 | 6 7 | iunex | ⊢ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V |
| 9 | sseq2 | ⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) | |
| 10 | treq | ⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) ) |
| 12 | 8 11 | spcev | ⊢ ( ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 13 | 4 5 12 | mp2b | ⊢ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) |
| 14 | abn0 | ⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) | |
| 15 | 13 14 | mpbir | ⊢ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ |
| 16 | intex | ⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) | |
| 17 | 15 16 | mpbi | ⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V |