This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of TakeutiZaring p. 78. (Contributed by NM, 23-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz9.13.1 | ⊢ 𝐴 ∈ V | |
| Assertion | tz9.13 | ⊢ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.13.1 | ⊢ 𝐴 ∈ V | |
| 2 | setind | ⊢ ( ∀ 𝑧 ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) → { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V ) | |
| 3 | ssel | ⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) ) | |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | eleq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 6 | 5 | rexbidv | ⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 7 | 4 6 | elab | ⊢ ( 𝑤 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 8 | 3 7 | imbitrdi | ⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ( 𝑤 ∈ 𝑧 → ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 9 | 8 | ralrimiv | ⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 10 | vex | ⊢ 𝑧 ∈ V | |
| 11 | 10 | tz9.12 | ⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑥 ∈ On 𝑤 ∈ ( 𝑅1 ‘ 𝑥 ) → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 13 | eleq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 14 | 13 | rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 15 | 10 14 | elab | ⊢ ( 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝑧 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 16 | 12 15 | sylibr | ⊢ ( 𝑧 ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } → 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ) |
| 17 | 2 16 | mpg | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } = V |
| 18 | 1 17 | eleqtrri | ⊢ 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } |
| 19 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 20 | 19 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 21 | 1 20 | elab | ⊢ ( 𝐴 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 22 | 18 21 | mpbi | ⊢ ∃ 𝑥 ∈ On 𝐴 ∈ ( 𝑅1 ‘ 𝑥 ) |