This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of TakeutiZaring p. 78. The main proof consists of tz9.12lem1 through tz9.12lem3 . (Contributed by NM, 22-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz9.12.1 | |- A e. _V |
|
| Assertion | tz9.12 | |- ( A. x e. A E. y e. On x e. ( R1 ` y ) -> E. y e. On A e. ( R1 ` y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12.1 | |- A e. _V |
|
| 2 | eqid | |- ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) = ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) |
|
| 3 | 1 2 | tz9.12lem2 | |- suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) e. On |
| 4 | 3 | onsuci | |- suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) e. On |
| 5 | 1 2 | tz9.12lem3 | |- ( A. x e. A E. y e. On x e. ( R1 ` y ) -> A e. ( R1 ` suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) ) ) |
| 6 | fveq2 | |- ( y = suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) -> ( R1 ` y ) = ( R1 ` suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) ) ) |
|
| 7 | 6 | eleq2d | |- ( y = suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) -> ( A e. ( R1 ` y ) <-> A e. ( R1 ` suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) ) ) ) |
| 8 | 7 | rspcev | |- ( ( suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) e. On /\ A e. ( R1 ` suc suc U. ( ( z e. _V |-> |^| { v e. On | z e. ( R1 ` v ) } ) " A ) ) ) -> E. y e. On A e. ( R1 ` y ) ) |
| 9 | 4 5 8 | sylancr | |- ( A. x e. A E. y e. On x e. ( R1 ` y ) -> E. y e. On A e. ( R1 ` y ) ) |