This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 25-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelssne | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 2 | tz7.7 | ⊢ ( ( Ord 𝐵 ∧ Tr 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 4 | 3 | ancoms | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |