This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of TakeutiZaring p. 37. (Contributed by NM, 5-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz7.7 | |- ( ( Ord A /\ Tr B ) -> ( B e. A <-> ( B C_ A /\ B =/= A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | |- ( Ord A -> Tr A ) |
|
| 2 | ordfr | |- ( Ord A -> _E Fr A ) |
|
| 3 | tz7.2 | |- ( ( Tr A /\ _E Fr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) ) |
|
| 4 | 3 | 3exp | |- ( Tr A -> ( _E Fr A -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) ) |
| 5 | 1 2 4 | sylc | |- ( Ord A -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) |
| 6 | 5 | adantr | |- ( ( Ord A /\ Tr B ) -> ( B e. A -> ( B C_ A /\ B =/= A ) ) ) |
| 7 | pssdifn0 | |- ( ( B C_ A /\ B =/= A ) -> ( A \ B ) =/= (/) ) |
|
| 8 | difss | |- ( A \ B ) C_ A |
|
| 9 | tz7.5 | |- ( ( Ord A /\ ( A \ B ) C_ A /\ ( A \ B ) =/= (/) ) -> E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) ) |
|
| 10 | 8 9 | mp3an2 | |- ( ( Ord A /\ ( A \ B ) =/= (/) ) -> E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) ) |
| 11 | eldifi | |- ( x e. ( A \ B ) -> x e. A ) |
|
| 12 | trss | |- ( Tr A -> ( x e. A -> x C_ A ) ) |
|
| 13 | difin0ss | |- ( ( ( A \ B ) i^i x ) = (/) -> ( x C_ A -> x C_ B ) ) |
|
| 14 | 13 | com12 | |- ( x C_ A -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) |
| 15 | 11 12 14 | syl56 | |- ( Tr A -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
| 16 | 1 15 | syl | |- ( Ord A -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( x e. ( A \ B ) -> ( ( ( A \ B ) i^i x ) = (/) -> x C_ B ) ) ) |
| 18 | 17 | imp32 | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x C_ B ) |
| 19 | eleq1w | |- ( y = x -> ( y e. B <-> x e. B ) ) |
|
| 20 | 19 | biimpcd | |- ( y e. B -> ( y = x -> x e. B ) ) |
| 21 | eldifn | |- ( x e. ( A \ B ) -> -. x e. B ) |
|
| 22 | 20 21 | nsyli | |- ( y e. B -> ( x e. ( A \ B ) -> -. y = x ) ) |
| 23 | 22 | imp | |- ( ( y e. B /\ x e. ( A \ B ) ) -> -. y = x ) |
| 24 | 23 | adantll | |- ( ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) -> -. y = x ) |
| 25 | 24 | adantl | |- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. y = x ) |
| 26 | trel | |- ( Tr B -> ( ( x e. y /\ y e. B ) -> x e. B ) ) |
|
| 27 | 26 | expcomd | |- ( Tr B -> ( y e. B -> ( x e. y -> x e. B ) ) ) |
| 28 | 27 | imp | |- ( ( Tr B /\ y e. B ) -> ( x e. y -> x e. B ) ) |
| 29 | 28 21 | nsyli | |- ( ( Tr B /\ y e. B ) -> ( x e. ( A \ B ) -> -. x e. y ) ) |
| 30 | 29 | ex | |- ( Tr B -> ( y e. B -> ( x e. ( A \ B ) -> -. x e. y ) ) ) |
| 31 | 30 | adantld | |- ( Tr B -> ( ( B C_ A /\ y e. B ) -> ( x e. ( A \ B ) -> -. x e. y ) ) ) |
| 32 | 31 | imp32 | |- ( ( Tr B /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. x e. y ) |
| 33 | 32 | adantll | |- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> -. x e. y ) |
| 34 | ordwe | |- ( Ord A -> _E We A ) |
|
| 35 | ssel2 | |- ( ( B C_ A /\ y e. B ) -> y e. A ) |
|
| 36 | 35 11 | anim12i | |- ( ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) -> ( y e. A /\ x e. A ) ) |
| 37 | wecmpep | |- ( ( _E We A /\ ( y e. A /\ x e. A ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
|
| 38 | 34 36 37 | syl2an | |- ( ( Ord A /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
| 39 | 38 | adantlr | |- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> ( y e. x \/ y = x \/ x e. y ) ) |
| 40 | 25 33 39 | ecase23d | |- ( ( ( Ord A /\ Tr B ) /\ ( ( B C_ A /\ y e. B ) /\ x e. ( A \ B ) ) ) -> y e. x ) |
| 41 | 40 | exp44 | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( y e. B -> ( x e. ( A \ B ) -> y e. x ) ) ) ) |
| 42 | 41 | com34 | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( x e. ( A \ B ) -> ( y e. B -> y e. x ) ) ) ) |
| 43 | 42 | imp31 | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ x e. ( A \ B ) ) -> ( y e. B -> y e. x ) ) |
| 44 | 43 | ssrdv | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ x e. ( A \ B ) ) -> B C_ x ) |
| 45 | 44 | adantrr | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> B C_ x ) |
| 46 | 18 45 | eqssd | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x = B ) |
| 47 | 11 | ad2antrl | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> x e. A ) |
| 48 | 46 47 | eqeltrrd | |- ( ( ( ( Ord A /\ Tr B ) /\ B C_ A ) /\ ( x e. ( A \ B ) /\ ( ( A \ B ) i^i x ) = (/) ) ) -> B e. A ) |
| 49 | 48 | rexlimdvaa | |- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( E. x e. ( A \ B ) ( ( A \ B ) i^i x ) = (/) -> B e. A ) ) |
| 50 | 10 49 | syl5 | |- ( ( ( Ord A /\ Tr B ) /\ B C_ A ) -> ( ( Ord A /\ ( A \ B ) =/= (/) ) -> B e. A ) ) |
| 51 | 50 | exp4b | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( Ord A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
| 52 | 51 | com23 | |- ( ( Ord A /\ Tr B ) -> ( Ord A -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
| 53 | 52 | adantrd | |- ( ( Ord A /\ Tr B ) -> ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) ) |
| 54 | 53 | pm2.43i | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( A \ B ) =/= (/) -> B e. A ) ) ) |
| 55 | 7 54 | syl7 | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( ( B C_ A /\ B =/= A ) -> B e. A ) ) ) |
| 56 | 55 | exp4a | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( B C_ A -> ( B =/= A -> B e. A ) ) ) ) |
| 57 | 56 | pm2.43d | |- ( ( Ord A /\ Tr B ) -> ( B C_ A -> ( B =/= A -> B e. A ) ) ) |
| 58 | 57 | impd | |- ( ( Ord A /\ Tr B ) -> ( ( B C_ A /\ B =/= A ) -> B e. A ) ) |
| 59 | 6 58 | impbid | |- ( ( Ord A /\ Tr B ) -> ( B e. A <-> ( B C_ A /\ B =/= A ) ) ) |