This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| txuni2.1 | ⊢ 𝑋 = ∪ 𝑅 | ||
| txuni2.2 | ⊢ 𝑌 = ∪ 𝑆 | ||
| Assertion | txuni2 | ⊢ ( 𝑋 × 𝑌 ) = ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txval.1 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| 2 | txuni2.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| 3 | txuni2.2 | ⊢ 𝑌 = ∪ 𝑆 | |
| 4 | relxp | ⊢ Rel ( 𝑋 × 𝑌 ) | |
| 5 | 2 | eleq2i | ⊢ ( 𝑧 ∈ 𝑋 ↔ 𝑧 ∈ ∪ 𝑅 ) |
| 6 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝑅 ↔ ∃ 𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝑧 ∈ 𝑋 ↔ ∃ 𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ) |
| 8 | 3 | eleq2i | ⊢ ( 𝑤 ∈ 𝑌 ↔ 𝑤 ∈ ∪ 𝑆 ) |
| 9 | eluni2 | ⊢ ( 𝑤 ∈ ∪ 𝑆 ↔ ∃ 𝑠 ∈ 𝑆 𝑤 ∈ 𝑠 ) | |
| 10 | 8 9 | bitri | ⊢ ( 𝑤 ∈ 𝑌 ↔ ∃ 𝑠 ∈ 𝑆 𝑤 ∈ 𝑠 ) |
| 11 | 7 10 | anbi12i | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌 ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ∧ ∃ 𝑠 ∈ 𝑆 𝑤 ∈ 𝑠 ) ) |
| 12 | opelxp | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌 ) ) | |
| 13 | reeanv | ⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠 ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑧 ∈ 𝑟 ∧ ∃ 𝑠 ∈ 𝑆 𝑤 ∈ 𝑠 ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠 ) ) |
| 15 | opelxp | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑟 × 𝑠 ) ↔ ( 𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠 ) ) | |
| 16 | eqid | ⊢ ( 𝑟 × 𝑠 ) = ( 𝑟 × 𝑠 ) | |
| 17 | xpeq1 | ⊢ ( 𝑥 = 𝑟 → ( 𝑥 × 𝑦 ) = ( 𝑟 × 𝑦 ) ) | |
| 18 | 17 | eqeq2d | ⊢ ( 𝑥 = 𝑟 → ( ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ↔ ( 𝑟 × 𝑠 ) = ( 𝑟 × 𝑦 ) ) ) |
| 19 | xpeq2 | ⊢ ( 𝑦 = 𝑠 → ( 𝑟 × 𝑦 ) = ( 𝑟 × 𝑠 ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑦 = 𝑠 → ( ( 𝑟 × 𝑠 ) = ( 𝑟 × 𝑦 ) ↔ ( 𝑟 × 𝑠 ) = ( 𝑟 × 𝑠 ) ) ) |
| 21 | 18 20 | rspc2ev | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ∧ ( 𝑟 × 𝑠 ) = ( 𝑟 × 𝑠 ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ) |
| 22 | 16 21 | mp3an3 | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ) |
| 23 | vex | ⊢ 𝑟 ∈ V | |
| 24 | vex | ⊢ 𝑠 ∈ V | |
| 25 | 23 24 | xpex | ⊢ ( 𝑟 × 𝑠 ) ∈ V |
| 26 | eqeq1 | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( 𝑧 = ( 𝑥 × 𝑦 ) ↔ ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ) ) | |
| 27 | 26 | 2rexbidv | ⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 𝑧 = ( 𝑥 × 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ) ) |
| 28 | eqid | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) | |
| 29 | 28 | rnmpo | ⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 𝑧 = ( 𝑥 × 𝑦 ) } |
| 30 | 1 29 | eqtri | ⊢ 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 𝑧 = ( 𝑥 × 𝑦 ) } |
| 31 | 25 27 30 | elab2 | ⊢ ( ( 𝑟 × 𝑠 ) ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑟 × 𝑠 ) = ( 𝑥 × 𝑦 ) ) |
| 32 | 22 31 | sylibr | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑟 × 𝑠 ) ∈ 𝐵 ) |
| 33 | elssuni | ⊢ ( ( 𝑟 × 𝑠 ) ∈ 𝐵 → ( 𝑟 × 𝑠 ) ⊆ ∪ 𝐵 ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) → ( 𝑟 × 𝑠 ) ⊆ ∪ 𝐵 ) |
| 35 | 34 | sseld | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) → ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑟 × 𝑠 ) → 〈 𝑧 , 𝑤 〉 ∈ ∪ 𝐵 ) ) |
| 36 | 15 35 | biimtrrid | ⊢ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠 ) → 〈 𝑧 , 𝑤 〉 ∈ ∪ 𝐵 ) ) |
| 37 | 36 | rexlimivv | ⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 ∈ 𝑟 ∧ 𝑤 ∈ 𝑠 ) → 〈 𝑧 , 𝑤 〉 ∈ ∪ 𝐵 ) |
| 38 | 14 37 | sylbi | ⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑋 × 𝑌 ) → 〈 𝑧 , 𝑤 〉 ∈ ∪ 𝐵 ) |
| 39 | 4 38 | relssi | ⊢ ( 𝑋 × 𝑌 ) ⊆ ∪ 𝐵 |
| 40 | elssuni | ⊢ ( 𝑥 ∈ 𝑅 → 𝑥 ⊆ ∪ 𝑅 ) | |
| 41 | 40 2 | sseqtrrdi | ⊢ ( 𝑥 ∈ 𝑅 → 𝑥 ⊆ 𝑋 ) |
| 42 | elssuni | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ⊆ ∪ 𝑆 ) | |
| 43 | 42 3 | sseqtrrdi | ⊢ ( 𝑦 ∈ 𝑆 → 𝑦 ⊆ 𝑌 ) |
| 44 | xpss12 | ⊢ ( ( 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑌 ) → ( 𝑥 × 𝑦 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 45 | 41 43 44 | syl2an | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 × 𝑦 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 46 | vex | ⊢ 𝑥 ∈ V | |
| 47 | vex | ⊢ 𝑦 ∈ V | |
| 48 | 46 47 | xpex | ⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 49 | 48 | elpw | ⊢ ( ( 𝑥 × 𝑦 ) ∈ 𝒫 ( 𝑋 × 𝑌 ) ↔ ( 𝑥 × 𝑦 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 50 | 45 49 | sylibr | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 × 𝑦 ) ∈ 𝒫 ( 𝑋 × 𝑌 ) ) |
| 51 | 50 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 × 𝑦 ) ∈ 𝒫 ( 𝑋 × 𝑌 ) |
| 52 | 28 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ( 𝑥 × 𝑦 ) ∈ 𝒫 ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑅 × 𝑆 ) ⟶ 𝒫 ( 𝑋 × 𝑌 ) ) |
| 53 | 51 52 | mpbi | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑅 × 𝑆 ) ⟶ 𝒫 ( 𝑋 × 𝑌 ) |
| 54 | frn | ⊢ ( ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑅 × 𝑆 ) ⟶ 𝒫 ( 𝑋 × 𝑌 ) → ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( 𝑋 × 𝑌 ) ) | |
| 55 | 53 54 | ax-mp | ⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ⊆ 𝒫 ( 𝑋 × 𝑌 ) |
| 56 | 1 55 | eqsstri | ⊢ 𝐵 ⊆ 𝒫 ( 𝑋 × 𝑌 ) |
| 57 | sspwuni | ⊢ ( 𝐵 ⊆ 𝒫 ( 𝑋 × 𝑌 ) ↔ ∪ 𝐵 ⊆ ( 𝑋 × 𝑌 ) ) | |
| 58 | 56 57 | mpbi | ⊢ ∪ 𝐵 ⊆ ( 𝑋 × 𝑌 ) |
| 59 | 39 58 | eqssi | ⊢ ( 𝑋 × 𝑌 ) = ∪ 𝐵 |