This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcmpb.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| txcmpb.2 | ⊢ 𝑌 = ∪ 𝑆 | ||
| Assertion | txcmpb | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑅 ×t 𝑆 ) ∈ Comp ↔ ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcmpb.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | txcmpb.2 | ⊢ 𝑌 = ∪ 𝑆 | |
| 3 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 𝑅 ×t 𝑆 ) ∈ Comp ) | |
| 4 | simplrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → 𝑌 ≠ ∅ ) | |
| 5 | fo1stres | ⊢ ( 𝑌 ≠ ∅ → ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑋 ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑋 ) |
| 7 | 1 2 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 9 | foeq2 | ⊢ ( ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑋 ↔ ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑋 ↔ ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑋 ) ) |
| 11 | 6 10 | mpbid | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑋 ) |
| 12 | 1 | toptopon | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 13 | 2 | toptopon | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) |
| 14 | tx1cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) | |
| 15 | 12 13 14 | syl2anb | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 17 | 1 | cncmp | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Comp ∧ ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑋 ∧ ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) → 𝑅 ∈ Comp ) |
| 18 | 3 11 16 17 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → 𝑅 ∈ Comp ) |
| 19 | simplrl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → 𝑋 ≠ ∅ ) | |
| 20 | fo2ndres | ⊢ ( 𝑋 ≠ ∅ → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ) |
| 22 | foeq2 | ⊢ ( ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ↔ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑌 ) ) | |
| 23 | 8 22 | syl | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑌 ↔ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑌 ) ) |
| 24 | 21 23 | mpbid | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑌 ) |
| 25 | tx2cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) | |
| 26 | 12 13 25 | syl2anb | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 28 | 2 | cncmp | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Comp ∧ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ∪ ( 𝑅 ×t 𝑆 ) –onto→ 𝑌 ∧ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → 𝑆 ∈ Comp ) |
| 29 | 3 24 27 28 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → 𝑆 ∈ Comp ) |
| 30 | 18 29 | jca | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) ∧ ( 𝑅 ×t 𝑆 ) ∈ Comp ) → ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ) |
| 31 | 30 | ex | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑅 ×t 𝑆 ) ∈ Comp → ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ) ) |
| 32 | txcmp | ⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑅 ×t 𝑆 ) ∈ Comp ) | |
| 33 | 31 32 | impbid1 | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( ( 𝑅 ×t 𝑆 ) ∈ Comp ↔ ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) ) ) |