This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Teichmüller-Tukey Lemma ttukey stated with the "choice" as an antecedent (the hypothesis U. A e. dom card says that U. A is well-orderable). (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ttukeyg | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 2 | ttukey2g | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) | |
| 3 | simpr | ⊢ ( ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) | |
| 4 | 3 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 5 | 2 4 | syl | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 6 | 5 | 3exp | ⊢ ( ∪ 𝐴 ∈ dom card → ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 7 | 6 | exlimdv | ⊢ ( ∪ 𝐴 ∈ dom card → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 8 | 1 7 | biimtrid | ⊢ ( ∪ 𝐴 ∈ dom card → ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
| 9 | 8 | 3imp | ⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |