This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a proper class, then the recursive function generator at (/) is the empty set. (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdg0n | ⊢ ( ¬ 𝐴 ∈ V → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | ⊢ ∅ ∈ On | |
| 2 | df-rdg | ⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 3 | 2 | tfr2 | ⊢ ( ∅ ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) |
| 5 | res0 | ⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) = ∅ | |
| 6 | 5 | fveq2i | ⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
| 7 | 4 6 | eqtri | ⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) |
| 8 | iftrue | ⊢ ( 𝑔 = ∅ → if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = 𝐴 ) | |
| 9 | eqid | ⊢ ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) | |
| 10 | 8 9 | fvmptn | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ∅ ) = ∅ ) |
| 11 | 7 10 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ∅ ) |