This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsms0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| tsms0.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| tsms0.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | ||
| tsms0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | tsms0 | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 tsums ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsms0.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | tsms0.1 | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 3 | tsms0.2 | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) | |
| 4 | tsms0.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 7 | 1 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 8 | 6 4 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 10 | 9 1 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 13 | 12 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) : 𝐴 ⟶ ( Base ‘ 𝐺 ) ) |
| 14 | fconstmpt | ⊢ ( 𝐴 × { 0 } ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) | |
| 15 | 1 | fvexi | ⊢ 0 ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 17 | 4 16 | fczfsuppd | ⊢ ( 𝜑 → ( 𝐴 × { 0 } ) finSupp 0 ) |
| 18 | 14 17 | eqbrtrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 0 ) finSupp 0 ) |
| 19 | 9 1 2 3 4 13 18 | tsmsid | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ∈ ( 𝐺 tsums ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| 20 | 8 19 | eqeltrrd | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 tsums ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |