This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 24-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsms0.z | |- .0. = ( 0g ` G ) |
|
| tsms0.1 | |- ( ph -> G e. CMnd ) |
||
| tsms0.2 | |- ( ph -> G e. TopSp ) |
||
| tsms0.a | |- ( ph -> A e. V ) |
||
| Assertion | tsms0 | |- ( ph -> .0. e. ( G tsums ( x e. A |-> .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsms0.z | |- .0. = ( 0g ` G ) |
|
| 2 | tsms0.1 | |- ( ph -> G e. CMnd ) |
|
| 3 | tsms0.2 | |- ( ph -> G e. TopSp ) |
|
| 4 | tsms0.a | |- ( ph -> A e. V ) |
|
| 5 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 6 | 2 5 | syl | |- ( ph -> G e. Mnd ) |
| 7 | 1 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 8 | 6 4 7 | syl2anc | |- ( ph -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | 9 1 | mndidcl | |- ( G e. Mnd -> .0. e. ( Base ` G ) ) |
| 11 | 6 10 | syl | |- ( ph -> .0. e. ( Base ` G ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. A ) -> .0. e. ( Base ` G ) ) |
| 13 | 12 | fmpttd | |- ( ph -> ( x e. A |-> .0. ) : A --> ( Base ` G ) ) |
| 14 | fconstmpt | |- ( A X. { .0. } ) = ( x e. A |-> .0. ) |
|
| 15 | 1 | fvexi | |- .0. e. _V |
| 16 | 15 | a1i | |- ( ph -> .0. e. _V ) |
| 17 | 4 16 | fczfsuppd | |- ( ph -> ( A X. { .0. } ) finSupp .0. ) |
| 18 | 14 17 | eqbrtrrid | |- ( ph -> ( x e. A |-> .0. ) finSupp .0. ) |
| 19 | 9 1 2 3 4 13 18 | tsmsid | |- ( ph -> ( G gsum ( x e. A |-> .0. ) ) e. ( G tsums ( x e. A |-> .0. ) ) ) |
| 20 | 8 19 | eqeltrrd | |- ( ph -> .0. e. ( G tsums ( x e. A |-> .0. ) ) ) |