This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltskg | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | ⊢ ( 𝑦 = 𝑇 → ( 𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑧 ⊆ 𝑇 ) ) | |
| 2 | rexeq | ⊢ ( 𝑦 = 𝑇 → ( ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑦 = 𝑇 → ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) ) |
| 4 | 3 | raleqbi1dv | ⊢ ( 𝑦 = 𝑇 → ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) ) |
| 5 | pweq | ⊢ ( 𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇 ) | |
| 6 | breq2 | ⊢ ( 𝑦 = 𝑇 → ( 𝑧 ≈ 𝑦 ↔ 𝑧 ≈ 𝑇 ) ) | |
| 7 | eleq2 | ⊢ ( 𝑦 = 𝑇 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑇 ) ) | |
| 8 | 6 7 | orbi12d | ⊢ ( 𝑦 = 𝑇 → ( ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
| 9 | 5 8 | raleqbidv | ⊢ ( 𝑦 = 𝑇 → ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
| 10 | 4 9 | anbi12d | ⊢ ( 𝑦 = 𝑇 → ( ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |
| 11 | df-tsk | ⊢ Tarski = { 𝑦 ∣ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) } | |
| 12 | 10 11 | elab2g | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |