This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tsken |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | ||
| 2 | 1 | ibi | |
| 3 | 2 | simprd | |
| 4 | elpw2g | ||
| 5 | 4 | biimpar | |
| 6 | breq1 | ||
| 7 | eleq1 | ||
| 8 | 6 7 | orbi12d | |
| 9 | 8 | rspccva | |
| 10 | 3 5 9 | syl2an2r |