This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the transitivity of cosets by R . (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 16-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcoss2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| 3 | 19.23v | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) | |
| 4 | eleccossin | ⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ↔ ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ) |
| 6 | 5 | bicomi | ⊢ ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ↔ 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ) |
| 7 | brcoss3 | ⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑧 ↔ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) | |
| 8 | 7 | el2v | ⊢ ( 𝑥 ≀ 𝑅 𝑧 ↔ ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) |
| 9 | 6 8 | imbi12i | ⊢ ( ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| 11 | n0 | ⊢ ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ) | |
| 12 | 11 | imbi1i | ⊢ ( ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| 13 | 3 10 12 | 3bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| 14 | 13 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑧 ∀ 𝑦 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| 15 | 2 14 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( [ 𝑥 ] ≀ 𝑅 ∩ [ 𝑧 ] ≀ 𝑅 ) ≠ ∅ → ( [ 𝑥 ] ◡ 𝑅 ∩ [ 𝑧 ] ◡ 𝑅 ) ≠ ∅ ) ) |