This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate form of the A and B are cosets by R binary relation. (Contributed by Peter Mazsa, 26-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcoss3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ◡ 𝑅 ∩ [ 𝐵 ] ◡ 𝑅 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V ) → ( 𝐴 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝐴 ) ) | |
| 2 | 1 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝐴 ) ) |
| 3 | brcnvg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑢 ∈ V ) → ( 𝐵 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝐵 ) ) | |
| 4 | 3 | elvd | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ◡ 𝑅 𝑢 ↔ 𝑢 𝑅 𝐵 ) ) |
| 5 | 2 4 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ◡ 𝑅 𝑢 ∧ 𝐵 ◡ 𝑅 𝑢 ) ↔ ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
| 6 | 5 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑢 ( 𝐴 ◡ 𝑅 𝑢 ∧ 𝐵 ◡ 𝑅 𝑢 ) ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) |
| 7 | ecinn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] ◡ 𝑅 ∩ [ 𝐵 ] ◡ 𝑅 ) ≠ ∅ ↔ ∃ 𝑢 ( 𝐴 ◡ 𝑅 𝑢 ∧ 𝐵 ◡ 𝑅 𝑢 ) ) ) | |
| 8 | brcoss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝐴 ∧ 𝑢 𝑅 𝐵 ) ) ) | |
| 9 | 6 7 8 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ( [ 𝐴 ] ◡ 𝑅 ∩ [ 𝐵 ] ◡ 𝑅 ) ≠ ∅ ) ) |