This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the transitivity of cosets by R . (Contributed by Peter Mazsa, 4-Jul-2020) (Revised by Peter Mazsa, 16-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcoss2 | |- ( A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom | |- ( A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. z A. y ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) ) |
|
| 2 | 1 | albii | |- ( A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z A. y ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) ) |
| 3 | 19.23v | |- ( A. y ( y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) <-> ( E. y y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
|
| 4 | eleccossin | |- ( ( y e. _V /\ z e. _V ) -> ( y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) <-> ( x ,~ R y /\ y ,~ R z ) ) ) |
|
| 5 | 4 | el2v | |- ( y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) <-> ( x ,~ R y /\ y ,~ R z ) ) |
| 6 | 5 | bicomi | |- ( ( x ,~ R y /\ y ,~ R z ) <-> y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) ) |
| 7 | brcoss3 | |- ( ( x e. _V /\ z e. _V ) -> ( x ,~ R z <-> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
|
| 8 | 7 | el2v | |- ( x ,~ R z <-> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) |
| 9 | 6 8 | imbi12i | |- ( ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> ( y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| 10 | 9 | albii | |- ( A. y ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. y ( y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| 11 | n0 | |- ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) <-> E. y y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) ) |
|
| 12 | 11 | imbi1i | |- ( ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) <-> ( E. y y e. ( [ x ] ,~ R i^i [ z ] ,~ R ) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| 13 | 3 10 12 | 3bitr4i | |- ( A. y ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| 14 | 13 | 2albii | |- ( A. x A. z A. y ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |
| 15 | 2 14 | bitri | |- ( A. x A. y A. z ( ( x ,~ R y /\ y ,~ R z ) -> x ,~ R z ) <-> A. x A. z ( ( [ x ] ,~ R i^i [ z ] ,~ R ) =/= (/) -> ( [ x ] `' R i^i [ z ] `' R ) =/= (/) ) ) |