This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of C have the common element B . (Contributed by Peter Mazsa, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleccossin | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ∈ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐶 ] ≀ 𝑅 ) ↔ ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐵 ≀ 𝑅 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝐵 ∈ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐶 ] ≀ 𝑅 ) ↔ ( 𝐵 ∈ [ 𝐴 ] ≀ 𝑅 ∧ 𝐵 ∈ [ 𝐶 ] ≀ 𝑅 ) ) | |
| 2 | relcoss | ⊢ Rel ≀ 𝑅 | |
| 3 | relelec | ⊢ ( Rel ≀ 𝑅 → ( 𝐵 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝐵 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝐵 ) |
| 5 | relelec | ⊢ ( Rel ≀ 𝑅 → ( 𝐵 ∈ [ 𝐶 ] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅 𝐵 ) ) | |
| 6 | 2 5 | ax-mp | ⊢ ( 𝐵 ∈ [ 𝐶 ] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅 𝐵 ) |
| 7 | 4 6 | anbi12i | ⊢ ( ( 𝐵 ∈ [ 𝐴 ] ≀ 𝑅 ∧ 𝐵 ∈ [ 𝐶 ] ≀ 𝑅 ) ↔ ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐶 ≀ 𝑅 𝐵 ) ) |
| 8 | 1 7 | bitri | ⊢ ( 𝐵 ∈ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐶 ] ≀ 𝑅 ) ↔ ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐶 ≀ 𝑅 𝐵 ) ) |
| 9 | brcosscnvcoss | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ 𝑅 𝐶 ↔ 𝐶 ≀ 𝑅 𝐵 ) ) | |
| 10 | 9 | anbi2d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐵 ≀ 𝑅 𝐶 ) ↔ ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐶 ≀ 𝑅 𝐵 ) ) ) |
| 11 | 8 10 | bitr4id | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ∈ ( [ 𝐴 ] ≀ 𝑅 ∩ [ 𝐶 ] ≀ 𝑅 ) ↔ ( 𝐴 ≀ 𝑅 𝐵 ∧ 𝐵 ≀ 𝑅 𝐶 ) ) ) |