This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the double transposition for a general class F . (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpostpos | ⊢ tpos tpos 𝐹 = ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reltpos | ⊢ Rel tpos tpos 𝐹 | |
| 2 | relinxp | ⊢ Rel ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) | |
| 3 | relcnv | ⊢ Rel ◡ dom tpos 𝐹 | |
| 4 | df-rel | ⊢ ( Rel ◡ dom tpos 𝐹 ↔ ◡ dom tpos 𝐹 ⊆ ( V × V ) ) | |
| 5 | 3 4 | mpbi | ⊢ ◡ dom tpos 𝐹 ⊆ ( V × V ) |
| 6 | simpl | ⊢ ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) → 𝑤 ∈ ◡ dom tpos 𝐹 ) | |
| 7 | 5 6 | sselid | ⊢ ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) → 𝑤 ∈ ( V × V ) ) |
| 8 | simpr | ⊢ ( ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) → 𝑤 ∈ ( V × V ) ) | |
| 9 | elvv | ⊢ ( 𝑤 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) | |
| 10 | eleq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ◡ dom tpos 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ dom tpos 𝐹 ) ) | |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 11 12 | opelcnv | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ dom tpos 𝐹 ↔ 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ) |
| 14 | 10 13 | bitrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 ∈ ◡ dom tpos 𝐹 ↔ 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ) ) |
| 15 | sneq | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → { 𝑤 } = { 〈 𝑥 , 𝑦 〉 } ) | |
| 16 | 15 | cnveqd | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ◡ { 𝑤 } = ◡ { 〈 𝑥 , 𝑦 〉 } ) |
| 17 | 16 | unieqd | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ∪ ◡ { 𝑤 } = ∪ ◡ { 〈 𝑥 , 𝑦 〉 } ) |
| 18 | opswap | ⊢ ∪ ◡ { 〈 𝑥 , 𝑦 〉 } = 〈 𝑦 , 𝑥 〉 | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ∪ ◡ { 𝑤 } = 〈 𝑦 , 𝑥 〉 ) |
| 20 | 19 | breq1d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ↔ 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ) ) |
| 21 | 14 20 | anbi12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ∧ 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ) ) ) |
| 22 | opex | ⊢ 〈 𝑦 , 𝑥 〉 ∈ V | |
| 23 | vex | ⊢ 𝑧 ∈ V | |
| 24 | 22 23 | breldm | ⊢ ( 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 → 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ) |
| 25 | 24 | pm4.71ri | ⊢ ( 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ↔ ( 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ∧ 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ) ) |
| 26 | brtpos | ⊢ ( 𝑧 ∈ V → ( 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) ) | |
| 27 | 26 | elv | ⊢ ( 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) |
| 28 | 25 27 | bitr3i | ⊢ ( ( 〈 𝑦 , 𝑥 〉 ∈ dom tpos 𝐹 ∧ 〈 𝑦 , 𝑥 〉 tpos 𝐹 𝑧 ) ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) |
| 29 | 21 28 | bitrdi | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) ) |
| 30 | breq1 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑤 𝐹 𝑧 ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) ) | |
| 31 | 29 30 | bitr4d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ 𝑤 𝐹 𝑧 ) ) |
| 32 | 31 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ 𝑤 𝐹 𝑧 ) ) |
| 33 | 9 32 | sylbi | ⊢ ( 𝑤 ∈ ( V × V ) → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ 𝑤 𝐹 𝑧 ) ) |
| 34 | iba | ⊢ ( 𝑤 ∈ ( V × V ) → ( 𝑤 𝐹 𝑧 ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) ) ) | |
| 35 | 33 34 | bitrd | ⊢ ( 𝑤 ∈ ( V × V ) → ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) ) ) |
| 36 | 7 8 35 | pm5.21nii | ⊢ ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) ) |
| 37 | elsni | ⊢ ( 𝑤 ∈ { ∅ } → 𝑤 = ∅ ) | |
| 38 | 37 | sneqd | ⊢ ( 𝑤 ∈ { ∅ } → { 𝑤 } = { ∅ } ) |
| 39 | 38 | cnveqd | ⊢ ( 𝑤 ∈ { ∅ } → ◡ { 𝑤 } = ◡ { ∅ } ) |
| 40 | cnvsn0 | ⊢ ◡ { ∅ } = ∅ | |
| 41 | 39 40 | eqtrdi | ⊢ ( 𝑤 ∈ { ∅ } → ◡ { 𝑤 } = ∅ ) |
| 42 | 41 | unieqd | ⊢ ( 𝑤 ∈ { ∅ } → ∪ ◡ { 𝑤 } = ∪ ∅ ) |
| 43 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 44 | 42 43 | eqtrdi | ⊢ ( 𝑤 ∈ { ∅ } → ∪ ◡ { 𝑤 } = ∅ ) |
| 45 | 44 | breq1d | ⊢ ( 𝑤 ∈ { ∅ } → ( ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ↔ ∅ tpos 𝐹 𝑧 ) ) |
| 46 | brtpos0 | ⊢ ( 𝑧 ∈ V → ( ∅ tpos 𝐹 𝑧 ↔ ∅ 𝐹 𝑧 ) ) | |
| 47 | 46 | elv | ⊢ ( ∅ tpos 𝐹 𝑧 ↔ ∅ 𝐹 𝑧 ) |
| 48 | 45 47 | bitrdi | ⊢ ( 𝑤 ∈ { ∅ } → ( ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ↔ ∅ 𝐹 𝑧 ) ) |
| 49 | 37 | breq1d | ⊢ ( 𝑤 ∈ { ∅ } → ( 𝑤 𝐹 𝑧 ↔ ∅ 𝐹 𝑧 ) ) |
| 50 | 48 49 | bitr4d | ⊢ ( 𝑤 ∈ { ∅ } → ( ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ↔ 𝑤 𝐹 𝑧 ) ) |
| 51 | 50 | pm5.32i | ⊢ ( ( 𝑤 ∈ { ∅ } ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 ∈ { ∅ } ∧ 𝑤 𝐹 𝑧 ) ) |
| 52 | 51 | biancomi | ⊢ ( ( 𝑤 ∈ { ∅ } ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ { ∅ } ) ) |
| 53 | 36 52 | orbi12i | ⊢ ( ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ∨ ( 𝑤 ∈ { ∅ } ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ) ↔ ( ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) ∨ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ { ∅ } ) ) ) |
| 54 | andir | ⊢ ( ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∨ 𝑤 ∈ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ∨ ( 𝑤 ∈ { ∅ } ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ) ) | |
| 55 | andi | ⊢ ( ( 𝑤 𝐹 𝑧 ∧ ( 𝑤 ∈ ( V × V ) ∨ 𝑤 ∈ { ∅ } ) ) ↔ ( ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ ( V × V ) ) ∨ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ∈ { ∅ } ) ) ) | |
| 56 | 53 54 55 | 3bitr4i | ⊢ ( ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∨ 𝑤 ∈ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ ( 𝑤 ∈ ( V × V ) ∨ 𝑤 ∈ { ∅ } ) ) ) |
| 57 | elun | ⊢ ( 𝑤 ∈ ( ◡ dom tpos 𝐹 ∪ { ∅ } ) ↔ ( 𝑤 ∈ ◡ dom tpos 𝐹 ∨ 𝑤 ∈ { ∅ } ) ) | |
| 58 | 57 | anbi1i | ⊢ ( ( 𝑤 ∈ ( ◡ dom tpos 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( ( 𝑤 ∈ ◡ dom tpos 𝐹 ∨ 𝑤 ∈ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ) |
| 59 | brxp | ⊢ ( 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ↔ ( 𝑤 ∈ ( ( V × V ) ∪ { ∅ } ) ∧ 𝑧 ∈ V ) ) | |
| 60 | 23 59 | mpbiran2 | ⊢ ( 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ↔ 𝑤 ∈ ( ( V × V ) ∪ { ∅ } ) ) |
| 61 | elun | ⊢ ( 𝑤 ∈ ( ( V × V ) ∪ { ∅ } ) ↔ ( 𝑤 ∈ ( V × V ) ∨ 𝑤 ∈ { ∅ } ) ) | |
| 62 | 60 61 | bitri | ⊢ ( 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ↔ ( 𝑤 ∈ ( V × V ) ∨ 𝑤 ∈ { ∅ } ) ) |
| 63 | 62 | anbi2i | ⊢ ( ( 𝑤 𝐹 𝑧 ∧ 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ ( 𝑤 ∈ ( V × V ) ∨ 𝑤 ∈ { ∅ } ) ) ) |
| 64 | 56 58 63 | 3bitr4i | ⊢ ( ( 𝑤 ∈ ( ◡ dom tpos 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ) ) |
| 65 | brtpos2 | ⊢ ( 𝑧 ∈ V → ( 𝑤 tpos tpos 𝐹 𝑧 ↔ ( 𝑤 ∈ ( ◡ dom tpos 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ) ) | |
| 66 | 65 | elv | ⊢ ( 𝑤 tpos tpos 𝐹 𝑧 ↔ ( 𝑤 ∈ ( ◡ dom tpos 𝐹 ∪ { ∅ } ) ∧ ∪ ◡ { 𝑤 } tpos 𝐹 𝑧 ) ) |
| 67 | brin | ⊢ ( 𝑤 ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) 𝑧 ↔ ( 𝑤 𝐹 𝑧 ∧ 𝑤 ( ( ( V × V ) ∪ { ∅ } ) × V ) 𝑧 ) ) | |
| 68 | 64 66 67 | 3bitr4i | ⊢ ( 𝑤 tpos tpos 𝐹 𝑧 ↔ 𝑤 ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) 𝑧 ) |
| 69 | 1 2 68 | eqbrriv | ⊢ tpos tpos 𝐹 = ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) |