This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the double transposition for a general class F . (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpostpos | |- tpos tpos F = ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reltpos | |- Rel tpos tpos F |
|
| 2 | relinxp | |- Rel ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |
|
| 3 | relcnv | |- Rel `' dom tpos F |
|
| 4 | df-rel | |- ( Rel `' dom tpos F <-> `' dom tpos F C_ ( _V X. _V ) ) |
|
| 5 | 3 4 | mpbi | |- `' dom tpos F C_ ( _V X. _V ) |
| 6 | simpl | |- ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) -> w e. `' dom tpos F ) |
|
| 7 | 5 6 | sselid | |- ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) -> w e. ( _V X. _V ) ) |
| 8 | simpr | |- ( ( w F z /\ w e. ( _V X. _V ) ) -> w e. ( _V X. _V ) ) |
|
| 9 | elvv | |- ( w e. ( _V X. _V ) <-> E. x E. y w = <. x , y >. ) |
|
| 10 | eleq1 | |- ( w = <. x , y >. -> ( w e. `' dom tpos F <-> <. x , y >. e. `' dom tpos F ) ) |
|
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | opelcnv | |- ( <. x , y >. e. `' dom tpos F <-> <. y , x >. e. dom tpos F ) |
| 14 | 10 13 | bitrdi | |- ( w = <. x , y >. -> ( w e. `' dom tpos F <-> <. y , x >. e. dom tpos F ) ) |
| 15 | sneq | |- ( w = <. x , y >. -> { w } = { <. x , y >. } ) |
|
| 16 | 15 | cnveqd | |- ( w = <. x , y >. -> `' { w } = `' { <. x , y >. } ) |
| 17 | 16 | unieqd | |- ( w = <. x , y >. -> U. `' { w } = U. `' { <. x , y >. } ) |
| 18 | opswap | |- U. `' { <. x , y >. } = <. y , x >. |
|
| 19 | 17 18 | eqtrdi | |- ( w = <. x , y >. -> U. `' { w } = <. y , x >. ) |
| 20 | 19 | breq1d | |- ( w = <. x , y >. -> ( U. `' { w } tpos F z <-> <. y , x >. tpos F z ) ) |
| 21 | 14 20 | anbi12d | |- ( w = <. x , y >. -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> ( <. y , x >. e. dom tpos F /\ <. y , x >. tpos F z ) ) ) |
| 22 | opex | |- <. y , x >. e. _V |
|
| 23 | vex | |- z e. _V |
|
| 24 | 22 23 | breldm | |- ( <. y , x >. tpos F z -> <. y , x >. e. dom tpos F ) |
| 25 | 24 | pm4.71ri | |- ( <. y , x >. tpos F z <-> ( <. y , x >. e. dom tpos F /\ <. y , x >. tpos F z ) ) |
| 26 | brtpos | |- ( z e. _V -> ( <. y , x >. tpos F z <-> <. x , y >. F z ) ) |
|
| 27 | 26 | elv | |- ( <. y , x >. tpos F z <-> <. x , y >. F z ) |
| 28 | 25 27 | bitr3i | |- ( ( <. y , x >. e. dom tpos F /\ <. y , x >. tpos F z ) <-> <. x , y >. F z ) |
| 29 | 21 28 | bitrdi | |- ( w = <. x , y >. -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> <. x , y >. F z ) ) |
| 30 | breq1 | |- ( w = <. x , y >. -> ( w F z <-> <. x , y >. F z ) ) |
|
| 31 | 29 30 | bitr4d | |- ( w = <. x , y >. -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> w F z ) ) |
| 32 | 31 | exlimivv | |- ( E. x E. y w = <. x , y >. -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> w F z ) ) |
| 33 | 9 32 | sylbi | |- ( w e. ( _V X. _V ) -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> w F z ) ) |
| 34 | iba | |- ( w e. ( _V X. _V ) -> ( w F z <-> ( w F z /\ w e. ( _V X. _V ) ) ) ) |
|
| 35 | 33 34 | bitrd | |- ( w e. ( _V X. _V ) -> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> ( w F z /\ w e. ( _V X. _V ) ) ) ) |
| 36 | 7 8 35 | pm5.21nii | |- ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) <-> ( w F z /\ w e. ( _V X. _V ) ) ) |
| 37 | elsni | |- ( w e. { (/) } -> w = (/) ) |
|
| 38 | 37 | sneqd | |- ( w e. { (/) } -> { w } = { (/) } ) |
| 39 | 38 | cnveqd | |- ( w e. { (/) } -> `' { w } = `' { (/) } ) |
| 40 | cnvsn0 | |- `' { (/) } = (/) |
|
| 41 | 39 40 | eqtrdi | |- ( w e. { (/) } -> `' { w } = (/) ) |
| 42 | 41 | unieqd | |- ( w e. { (/) } -> U. `' { w } = U. (/) ) |
| 43 | uni0 | |- U. (/) = (/) |
|
| 44 | 42 43 | eqtrdi | |- ( w e. { (/) } -> U. `' { w } = (/) ) |
| 45 | 44 | breq1d | |- ( w e. { (/) } -> ( U. `' { w } tpos F z <-> (/) tpos F z ) ) |
| 46 | brtpos0 | |- ( z e. _V -> ( (/) tpos F z <-> (/) F z ) ) |
|
| 47 | 46 | elv | |- ( (/) tpos F z <-> (/) F z ) |
| 48 | 45 47 | bitrdi | |- ( w e. { (/) } -> ( U. `' { w } tpos F z <-> (/) F z ) ) |
| 49 | 37 | breq1d | |- ( w e. { (/) } -> ( w F z <-> (/) F z ) ) |
| 50 | 48 49 | bitr4d | |- ( w e. { (/) } -> ( U. `' { w } tpos F z <-> w F z ) ) |
| 51 | 50 | pm5.32i | |- ( ( w e. { (/) } /\ U. `' { w } tpos F z ) <-> ( w e. { (/) } /\ w F z ) ) |
| 52 | 51 | biancomi | |- ( ( w e. { (/) } /\ U. `' { w } tpos F z ) <-> ( w F z /\ w e. { (/) } ) ) |
| 53 | 36 52 | orbi12i | |- ( ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) \/ ( w e. { (/) } /\ U. `' { w } tpos F z ) ) <-> ( ( w F z /\ w e. ( _V X. _V ) ) \/ ( w F z /\ w e. { (/) } ) ) ) |
| 54 | andir | |- ( ( ( w e. `' dom tpos F \/ w e. { (/) } ) /\ U. `' { w } tpos F z ) <-> ( ( w e. `' dom tpos F /\ U. `' { w } tpos F z ) \/ ( w e. { (/) } /\ U. `' { w } tpos F z ) ) ) |
|
| 55 | andi | |- ( ( w F z /\ ( w e. ( _V X. _V ) \/ w e. { (/) } ) ) <-> ( ( w F z /\ w e. ( _V X. _V ) ) \/ ( w F z /\ w e. { (/) } ) ) ) |
|
| 56 | 53 54 55 | 3bitr4i | |- ( ( ( w e. `' dom tpos F \/ w e. { (/) } ) /\ U. `' { w } tpos F z ) <-> ( w F z /\ ( w e. ( _V X. _V ) \/ w e. { (/) } ) ) ) |
| 57 | elun | |- ( w e. ( `' dom tpos F u. { (/) } ) <-> ( w e. `' dom tpos F \/ w e. { (/) } ) ) |
|
| 58 | 57 | anbi1i | |- ( ( w e. ( `' dom tpos F u. { (/) } ) /\ U. `' { w } tpos F z ) <-> ( ( w e. `' dom tpos F \/ w e. { (/) } ) /\ U. `' { w } tpos F z ) ) |
| 59 | brxp | |- ( w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z <-> ( w e. ( ( _V X. _V ) u. { (/) } ) /\ z e. _V ) ) |
|
| 60 | 23 59 | mpbiran2 | |- ( w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z <-> w e. ( ( _V X. _V ) u. { (/) } ) ) |
| 61 | elun | |- ( w e. ( ( _V X. _V ) u. { (/) } ) <-> ( w e. ( _V X. _V ) \/ w e. { (/) } ) ) |
|
| 62 | 60 61 | bitri | |- ( w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z <-> ( w e. ( _V X. _V ) \/ w e. { (/) } ) ) |
| 63 | 62 | anbi2i | |- ( ( w F z /\ w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z ) <-> ( w F z /\ ( w e. ( _V X. _V ) \/ w e. { (/) } ) ) ) |
| 64 | 56 58 63 | 3bitr4i | |- ( ( w e. ( `' dom tpos F u. { (/) } ) /\ U. `' { w } tpos F z ) <-> ( w F z /\ w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z ) ) |
| 65 | brtpos2 | |- ( z e. _V -> ( w tpos tpos F z <-> ( w e. ( `' dom tpos F u. { (/) } ) /\ U. `' { w } tpos F z ) ) ) |
|
| 66 | 65 | elv | |- ( w tpos tpos F z <-> ( w e. ( `' dom tpos F u. { (/) } ) /\ U. `' { w } tpos F z ) ) |
| 67 | brin | |- ( w ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) z <-> ( w F z /\ w ( ( ( _V X. _V ) u. { (/) } ) X. _V ) z ) ) |
|
| 68 | 64 66 67 | 3bitr4i | |- ( w tpos tpos F z <-> w ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) z ) |
| 69 | 1 2 68 | eqbrriv | |- tpos tpos F = ( F i^i ( ( ( _V X. _V ) u. { (/) } ) X. _V ) ) |