This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpostpos2 | ⊢ ( ( Rel 𝐹 ∧ Rel dom 𝐹 ) → tpos tpos 𝐹 = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpostpos | ⊢ tpos tpos 𝐹 = ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) | |
| 2 | relrelss | ⊢ ( ( Rel 𝐹 ∧ Rel dom 𝐹 ) ↔ 𝐹 ⊆ ( ( V × V ) × V ) ) | |
| 3 | ssun1 | ⊢ ( V × V ) ⊆ ( ( V × V ) ∪ { ∅ } ) | |
| 4 | xpss1 | ⊢ ( ( V × V ) ⊆ ( ( V × V ) ∪ { ∅ } ) → ( ( V × V ) × V ) ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( V × V ) × V ) ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) |
| 6 | sstr | ⊢ ( ( 𝐹 ⊆ ( ( V × V ) × V ) ∧ ( ( V × V ) × V ) ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) → 𝐹 ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐹 ⊆ ( ( V × V ) × V ) → 𝐹 ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) |
| 8 | 2 7 | sylbi | ⊢ ( ( Rel 𝐹 ∧ Rel dom 𝐹 ) → 𝐹 ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) |
| 9 | dfss2 | ⊢ ( 𝐹 ⊆ ( ( ( V × V ) ∪ { ∅ } ) × V ) ↔ ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) = 𝐹 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( Rel 𝐹 ∧ Rel dom 𝐹 ) → ( 𝐹 ∩ ( ( ( V × V ) ∪ { ∅ } ) × V ) ) = 𝐹 ) |
| 11 | 1 10 | eqtrid | ⊢ ( ( Rel 𝐹 ∧ Rel dom 𝐹 ) → tpos tpos 𝐹 = 𝐹 ) |